Introduction to Machine Learning

ML-Basics What is Machine Learning?

Learning goals Understand basi telunderstand basic terminology of and connections betweeconnections between ML, AI, DL and statistics statistics Knew the main de Know the main directions of ML: Supervised, Unsup Supervised, Unsupervised and Reinforcement Lear Reinforcement Learning

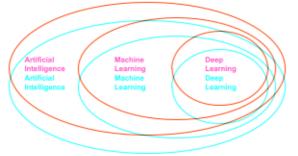
MLIS CHANGING OUR WORLD ING OUR WORLD

- Search engines learn your search preferences
- Recommender systems learn your taste in books, music, movies,...
- Algorithms do automatic stock trading
- Tools can accurately translate between many different languages
- DeepMind beats homans at Go translate text
- Bhysicians are supported by personalized medicine
- LLMs revolutionize many fields (currently especially coding)
- Data-driven discoveries are made in physics, biology, genetics, astronomy, chemistry, neurology,...
- Smart-watches monitor your health
- Election campaigns use algorithmically a geted ads to influence voters
- Data-driven discondition in ade in physics, biology, genetics, astronomy, chemistry incursors.

All End-Scenario: Necessary Rescue

AHMUANDEDEF ARTIFICIAL INTELLIGENCE

... and the connections to Machine Learning and Deep Learning



Many people are confused what these terms actually mean.

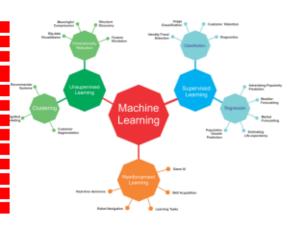
And what does all this have to do with statistics?

ARTIFICIAL INTELLIGENCE

- General term for a very large and rapidly developing field.
- developing dieldict definition of AI, but it's often used when machines
- No strict definition, but often tasks which until that time could only be machines perform tasks that could only be solver umed to require by humans or are very difficult and assumed to
- require tintelligence 340s when the computer was invented
- Started in the 1940sig when the computer washing mediately as ked inventeds Turing and von Neumann immediately in we use asked; If we can formalize computation, can we use that to formalize "thinking"?
- use that to formalize "thinking"?

 Al includes machine learning, natural language processing
- Includes MLisNLP, computer vision irobotics; ch. game playing, planning, search, intelligent agents.
- Sometimes misused as a "hype" term for ML or open use basicidata analysis ay: ML or ... basic data analysis.
- Or people refer to the fascinating developments in the area of foundation models

MACHINE LEARNING



mage via https://www.oreilly.com/library/view/java-deep-learning/ 9781788997454/assets/899ceaf3-c710-4575-ae99-33c75cd5ac2f.png

- Mathematically well-defined and solves reasonably narrow tasks.
- Usually-construct predictive ruct models from data, instead ofor explicitly programming them.
- A computer program is said to
- learn from experience E witho respect to some taskeT and has some performance measure P, if its performance on Thassure P, if measured by P, improves with experience E.P, improves with Tom Mitchell, Carnegie Mellon University, 1998 arnegie Mellon University, 1998

DEEP LEARNING

- DL is a subfield of ML which studies neural networks.
 Subfield of ML which studies neural networks.
- Artificial neural networks (ANNs) might have been (roughly)
 Artificial neural networks are roughly inspired by
 the human brain, but we treat them as useful, simply a certain model
 mathematical models.
- Studied for decades (start in the 1940/50s). Uses es more layers, more layers, might use specific neurons, e.g., for id tensors and many images many computational improvements to on large data.
- train on large data on tabular data, but typical applications are
- Can be used on tabular data, but typical
- applications are images, texts or signals remarkable results are
- trastat5-20 yéars have produced remarkable ult looked intelligent.
 results and imitations of human ability, where the result looked intelligent.

"Any sufficiently advanced technology is indistinguishable from magic."

"Any sufficiently advanced technology is

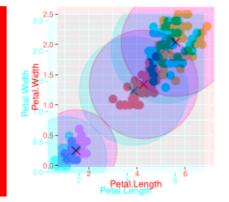
indistinguishable from magic." Arthur C. Clarke's 3rd law

ML VS. STATS

- ML and Statistics have historically been developed in different fields, but many methods and especially the mathematical
- Historically developed as different fields, but many methods and concepts are pretty much the same.
- Traditionally, models from ML focused more on precise predictions
- ML: Rather accurate predictions with more complex models the ability to
- Stats: More interpreting relationships and sound inference of the ability to
- Now: Both basically work on same problems with same tools.
- Nowadays, ML and predictive modelling in statistics basically w on the same problems with the same tools.
- Often different terminology for the same concepts.
 Unfortunately, the communities are still divided, don't talk to each
- Most parts of MI we could also call and everyone is confused due to Nonparametric statistics plus efficient numerical optimization.
- Personal opinion: Nowadays few practical differences, seeing differences instead of commonalities mainly holds you back Nonparametric statistics plus efficient numerical optimization.

UNSUPERVISED LEARNING

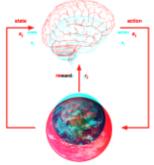
- Data without labels y
- Search for patterns within the inputs x
- Unsupervised as there is no "true" output we can optimize against



- Dimensionality reduction (PCA,^A)
 authoricoders ...);
 compress information in X¹
- Clustering: group similar observations
- Outlier detection, anomaly y detection
 - Association rules

REINFORCEMENT LEARNING

General-purpose frameworks At each time step an agent interacts with an environment. It cobserves state; receives reward; executes action. executes action.



- Goal: Select actions to maximize future reward.
- Goal: Select actions to maximize future reward, ed.
- Reward signals may be sparse, noisy and delayed.

WHAT COMES NEXT

- Supervised learning for regression and classification apredict labels by through features x, based on training datas x, using
- First, we will go through fundamental concepts in supervised ML:
- First, What/kind of "data" do we learn from ppts in supervised ML:
 - What isral*prediction/model*?rn from?
 - How can we quantify predictive performance?
 - · What is a "learning algorithm"
 - How can we operationalize tearning?ormance"?
- We will also introduce first concrete learning algorithms: Linear models, trees and forests: nalize learning?
- More complex stuff comes later fairly simple ML models to obtain a basic understanding.
- More complex stuff comes later.

