Introduction to Machine Learning

ML-Basics Supervised Tasks

Learning goals

- Know definition and examples of supervised tasks
- Understand the difference between regression and classification

TASKS: REGRESSION VS CLASSIFICATION

- Supervised tasks are data situations where learning the functional relationship between inputs (features) and output (target) is useful.
- The two most basic tasks are regression and classification, depending on whether the target is numerical or categorical.

PREDICT VS. EXPLAIN

We can distinguish two main reasons to learn this relationship:

- Learning to predict. Here busually we don't care how our model is structured or whether we can understand it.
 We want an accurate predictor for new data evelop.
- Learning to explain. Here, our model's only a means to a better understanding of the inherent relationship in the data.
- We might not use the learned model on new observations abutter
 rather discuss its implications, in a scientific on social context. Of
 course a model must imatch! the idata, we usually still measure
 this via predictive accuracy disease. We might not use the learned
 model on new observations, but rather discuss its implications, in a

While ML was traditionally more interested in the former, classical statistics addressed the latter in many tasks nowadays both are relevant—atoldifferent degrees. In many tasks nowadays both are relevant — to different degrees.

REGRESSION EXAMPLE: HOUSE PRICES

Predict the price for a house in a certain area

	Target y			
square footage of the house	number of cwimming bedrooms peel (yes/ne)		-	house price In US\$
1,160	3	0	_	221,900
2,570	3	1	-	538,000
סדד	2	0	_	180,000
1,960	4	1	-	604,000

Rather learn to explain. We might want to understand what influences a house price most. But maybe we are also looking for underpriced houses and the predictor is of direct use, too.

REGRESSION EXAMPLE: LENGTH-OF-STAY

Predict days a patient has to stay in hospital at time of admission

	Target y				
diagnosis category	admission type	gender	age	-	Length-of-stay in the hospital in days
heart disease	elective	male	75		4.6
injury	emergency	male	22		2.6
psychosis	newborn	female	0		8
pneumonia	urgent	female	67		5.5

Can be *learn to explain*, but *learn to predict* would help a hospital's planning.immensely.