Introduction to Machine Learning

ML-Basics Learner

Learning goals

- Know formal definition of learner arner
- Understand that a learner receives training data and outputs the best
- model from H

SUPERVISED LEARNING EXAMPLE

Imagine we want to investigate how working conditions affect productivity of employees.

- It is a regression task since the target productivity is continuous.
- We collect data about worked minutes per week (productivity), how many people work in the same office as the employee in question, and the employee's salary.

	Features z		Target y	
	People in Office (Feature I) x_1	Salary (Feature 2) x2	Worked Minutes Week (Target Variable)	
(4	4300 € 🐧	2220	
n = 3	y 12	2700 €	1800	
1	5	3100 €	1920	*
$x_1^{(2)}$	p=2		$x_2^{(1)}$	y ⁽³⁾

IDEA OF SUPERVISED LEARNING

Goal: Identify the functional relationship that maps features to target.

We could investigate the data manually and come up with a simple, hand Supervised learning means we use labeled data to learn model f.

- tater we use model if to predict ynfor new unlabeled data; and 7 people in the office is 1850 minutes
- A decrease of 1 persognin the office increases productivity by 30
- An increase of the salary by 1039 Acre as so oductivity by 10

LEARNER DEFINITION LEARNING

Algorithm for finding his called learner / learning algorithm /he data inducers an object's features to the target.

- The learner is our means of picking the best element from the hypothesis space H for given training data.
- Formally, it maps training data D ∈ D (plus a vector of
- hyperparameter control settings an full to a models for new data whose target values are unknown.

LEARNER DEFINITION

- The algorithm for finding our *f* is called **learner**. It is also called **learning algorithm** or **inducer**.
- We prescribe a certain hypothesis space, the learner is our means of picking the best element from that space for our data set.
- Formally, it maps training data $\mathcal{D} \in \mathbb{D}$ (plus a vector of hyperparameter control settings $\lambda \in \Lambda$) to a model:

$$\mathcal{I}: \mathbb{D} \times \Lambda \to \mathcal{H}$$

	Train Se		
9	2)	x_2	
	- 4	4000	
1900	12	2700	
1930	15	2400	
	Leamer		
	Model		

LEARNER DEFINITION

As pseudo-code template it would work like this:

- ullet Learner has a defined model space of parametrized functions ${\cal H}.$
- User passes data set \mathcal{D}_{train} and control settings λ .
- Learner sets parameters so that model matches data best.
- Optimal parameters $\hat{\theta}$ or function \hat{t} is returned for later usage.

