
Applied Machine Learning

Parallelization:
Batchtools package

Learning goals
Understand parallelization concepts

Introduction to batchtools package



PARALLELIZATION

Goal: Minimize computation time by distributing tasks across
CPUs/GPUs.
⇒ Speedup is ideally linear but often limited by overhead and
dependencies.

Debugging parallel code is especially hard.

Coding discipline is even more important to minimize errors and
frustration.

What can be easily parallelized?
Independent replications
Resampling, cross-validation
Model averaging
Parameter variations in simulations . . .
"Single program, multiple data"
Everything expressible as a loop of independent iterations
(if you can write it with (l|m|)apply, you are fine)

Many statistical problems are "embarrassingly parallel"

© Applied Machine Learning – 1 / 15



NAIVE BATCH COMPUTING (NON-CLUSTER)

Workflow on multicore machines:

Write standalone script(s) to run jobs and save outputs.

Hard-code parameters or pass via Command-Line Interface (CLI).

Log in via SSH; run with R CMD BATCH myscript.R.

Use nohup, screen, or tmux to persist after logout.

Manually start jobs when CPUs free up.

Check completion and errors by hand.

Write scripts to merge results.

Drawbacks:

No resource management, automation, or fair scheduling.

Poor scalability; hard to debug parallel issues.

No guarantees for reproducibility (e.g., seeding).

© Applied Machine Learning – 2 / 15



HIGH-PERFORMANCE COMPUTING (HPC)
CLUSTERS

Users access a gateway server (head node).

Cluster = multiple nodes managed by a scheduler (e.g., SLURM).

Scheduler assigns jobs to nodes via a queuing system.

Nodes share a common file system.

© Applied Machine Learning – 3 / 15



MANUAL WORKFLOW ON A HPC CLUSTER
Resource Specification:

Define CPU count, memory, runtime, partition.

Set command (e.g., R CMD BATCH script.R).

Manual Tasks:

Submit jobs via CLI or shell scripts.

Monitor with tools like squeue.

Write aggregation scripts for results.

Typical Workflow:

Unroll R loops into single-iteration scripts.

Auto-generate job and script files per task.

Submit jobs; crawl logs and outputs.

Handling Issues:

Kill + resubmit on failure.

Adjust resources on wall-time hits.

Full rerun for changes in data or params.

© Applied Machine Learning – 4 / 15



BATCHTOOLS OVERVIEW

R package for structured access to batch systems.

Built around Map-Reduce: apply algorithms to many problems.

Full control from R: submit, monitor, kill jobs.

Persistent state: resume and audit large experiments.

Convenient debugging and result collection.

Supports reproducibility across hardware and job schedulers.

Supports multiple execution backends:
Interactive: Run jobs directly in the current R session
Multicore: Parallel execution on local CPU cores
SSH: Offload jobs to remote machines via SSH
HPC schedulers: SLURM, Torque/PBS, Load Sharing Facility
(LSF), etc.

Project Page: https://github.com/mllg/batchtools

Paper: https://doi.org/10.21105/joss.00135

© Applied Machine Learning – 5 / 15

https://github.com/mllg/batchtools
https://doi.org/10.21105/joss.00135


CREATING AND CONFIGURING A REGISTRY
Purpose:

A registry object is used to access and exchange information: file paths,
job parameters, and computational events, ...
Stores all data in a single, portable directory for easy tracking and
reproducibility.

Initialization of a new registry:

library(batchtools)
reg = makeRegistry(

file.dir = "registry", # Directory accessible on all nodes
seed = 1 # Initial seed for reproducibility

)

Configure the system:

# Set interactive mode and start jobs in external R sessions
reg$cluster.functions = makeClusterFunctionsInteractive(external = TRUE)

Each supported system has its own makeClusterFunctions* function.
Load an existing registry to continue work:

loadRegistry("registry")

© Applied Machine Learning – 6 / 15



DEFINE JOBS
batchMap:

Like lapply or mapply

(x1, x2)× (y1, y2) → (f (x1, y1), f (x2, y2))

10 jobs to calculate 1 + 9, 2 + 8, . . . , 9 + 1

map = function(i, j) i + j
ids = batchMap(fun = map, i = 1:9, j = 9:1, reg = reg)

Stores function on file system

Creates jobs as rows in a data.table

Parameters also serialized into the data.table for fast access

All jobs get unique positive integers as IDs

reg = can be omitted in most cases. See ?getDefaultRegistry.

© Applied Machine Learning – 7 / 15



SUBSET JOBS
Query Job IDs by Status and Parameters

Use find* functions to query job IDs by computational status:
findError to get job IDs for failed jobs
findDone to get job IDs for successful jobs
findNotSubmitted to get job IDs in order resume jobs
...

Query job IDs by parameters with findJobs(pars) (here: i and j), e.g.,:

job = findJobs(i == 2 & j == 8)
job
## Key: <job.id>
## job.id
## <int>
## 1: 2

Pass the data.table containing the job.ids to functions interacting
with the batch system, e.g., submitJobs(ids = job)

© Applied Machine Learning – 8 / 15



SUBMIT JOBS

Creates R script files and job description files on the fly

Resources can be provided as named list

# 1 hour maximal execution time, about 2 GB of RAM
res = list(walltime = 60*60, memory = 2000)

# ... and submit
submitJobs(resources = res)

Submits all jobs per default

Subsets of jobs can be providing as data.table or vector

submitJobs(ids = 1:5, resources = res)

Collect/reduce results:

# get results of each job in a list
reduceResultsList(ids = findDone())

# get result of single job
loadResult(id = 1)

© Applied Machine Learning – 9 / 15



SUPERVISE AND DEBUG

Quick overview of what is going on: getStatus()

## Status for 9 jobs at 2019-10-10 17:49:48:
## Submitted : 9 (100.0%)
## -- Queued : 0 ( 0.0%)
## -- Started : 9 (100.0%)
## ---- Running : 0 ( 0.0%)
## ---- Done : 9 (100.0%)
## ---- Error : 0 ( 0.0%)
## ---- Expired : 0 ( 0.0%)

Display log files with a customizable pager (less, vi, ...):
showLog(findErrors()[1])

You can also grepLogs(pattern)

Found a bug? killJobs(findRunning())

Run a job in the current R session: testJob(id)

© Applied Machine Learning – 10 / 15



EXPERIMENTS IN BATCHTOOLS

Purpose: Abstraction for typical statistical tasks.

Applying Algorithms to Problems:
Ideal for simulations, benchmark experiments, sensitivity analyses,
...
Simplifies workflow with a focus on job definition.

Scenarios:
Compare machine learning algorithms on multiple datasets.
Compare one/many estimation procedure(s) on simulated data.
Compare optimizers on various objective functions.

© Applied Machine Learning – 11 / 15



ABSTRACTION OF COMPUTER EXPERIMENTS

Problem Definition:
Static part: Immutable R objects (e.g., matrices, data frames).
Dynamic part: Arbitrary R functions (e.g., transformations of static
objects, data extraction from external sources, data generation
functions).

Parametrization: Specify experimental designs for problems and
algorithms.

Seeding and Reproducibility:
Each step is automatically seeded.
Random seeds are stored in a database for reproducibility.

© Applied Machine Learning – 12 / 15



EXPERIMENT DEFINITION STEPS

Add problems to registry: addProblem
Efficient storage: Separation of static (data) and dynamic
(instance) problem parts.

Add algorithms to registry: addAlgorithm
Problem instance gets passed to algorithm
Can be connected with an experimental design (function
parameters)
Return value will be saved on the file system

Add experiments to registry: addExperiments
Experiment: problem instance + algorithm + algorithm parameters
Job: Experiment + replication number

© Applied Machine Learning – 13 / 15



A SIMPLE EXAMPLE

reg = makeExperimentRegistry("test_reg")
addProblem(name = "p1", data = 1, seed = 1,

fun = function(data, job) runif(data))
addAlgorithm(name = "a1",

fun = function(job, data, instance) 2 * instance)
addAlgorithm(name = "a2",

fun = function(job, data, instance) data + instance)
addExperiments(repls = 2)
submitJobs()
res = reduceResultsDataTable()
getJobPars()[res]

## Key: <job.id>
## job.id problem prob.pars algorithm algo.pars result
## <int> <char> <list> <char> <list> <list>
## 1: 1 p1 <list[0]> a1 <list[0]> 0.5310
## 2: 2 p1 <list[0]> a1 <list[0]> 0.3698
## 3: 3 p1 <list[0]> a2 <list[0]> 1.2655
## 4: 4 p1 <list[0]> a2 <list[0]> 1.1849

© Applied Machine Learning – 14 / 15



SUMMARY

Reproducibility:
Every computation is seeded.
Seeds are stored in a data.table.

Extensibility:
Easily add more problems or algorithms.
Try different parameters or increase replications at any stage.

Portability: Data, algorithms, results, and job information in a single
directory.

Exchangeability: Share your file directory to allow others to extend your
study with their data sets and algorithms.

Simplifies working with batch systems.

Control batch systems interactively from within R (no shell required).

Facilitates reproducible research.

Enables easy exchange of code and results with others.

© Applied Machine Learning – 15 / 15


