Applied Machine Learning

Parallelization:
Batchtools package

Learning goals
@ Understand parallelization concepts
@ Introduction to batchtools package

PARALLELIZATION

Goal: Minimize computation time by distributing tasks across
CPUs/GPUs.

= Speedup is ideally linear but often limited by overhead and
dependencies.

@ Debugging parallel code is especially hard.

@ Coding discipline is even more important to minimize errors and

frustration.

What can be easily parallelized?

Independent replications

Resampling, cross-validation

Model averaging

Parameter variations in simulations . ..

"Single program, multiple data"

Everything expressible as a loop of independent iterations
(if you can write it with (1|m|)apply, you are fine)

Many statistical problems are "embarrassingly parallel”

Applied Machine Learning — 1/15

NAIVE BATCH COMPUTING (NON-CLUSTER)

Workflow on multicore machines:
@ Write standalone script(s) to run jobs and save outputs.
Hard-code parameters or pass via Command-Line Interface (CLI).
Log in via SSH; run withR CMD BATCH myscript.R.

Use nohup, screen, or tmux to persist after logout.

Check completion and errors by hand.

°
°
°
@ Manually start jobs when CPUs free up.
°
@ Write scripts to merge results.

Drawbacks:
@ No resource management, automation, or fair scheduling.
@ Poor scalability; hard to debug parallel issues.
@ No guarantees for reproducibility (e.g., seeding).

Applied Machine Learning — 2/15

HIGH-PERFORMANCE COMPUTING (HPC)

CLUSTERS
Gateway Scheduler iNOde
<< B v
‘E Node

@ Users access a gateway server (head node).

@ Cluster = multiple nodes managed by a scheduler (e.g., SLURM).
@ Scheduler assigns jobs to nodes via a queuing system.

@ Nodes share a common file system.

Applied Machine Learning — 3/15

MANUAL WORKFLOW ON A HPC CLUSTER

Resource Specification:
@ Define CPU count, memory, runtime, partition.
@ Set command (e.g., R CMD BATCH script.R).
Manual Tasks:
@ Submit jobs via CLI or shell scripts.

@ Monitor with tools like squeue.

@ Write aggregation scripts for results.
Typical Workflow:

@ Unroll R loops into single-iteration scripts.

@ Auto-generate job and script files per task.

@ Submit jobs; crawl logs and outputs.
Handling Issues:

@ Kill + resubmit on failure.

@ Adjust resources on wall-time hits.

@ Full rerun for changes in data or params.

Applied Machine Learning — 4/15

BATCHTOOLS OVERVIEW

R package for structured access to batch systems.
Built around Map-Reduce: apply algorithms to many problems.
Full control from R: submit, monitor, kill jobs.

Persistent state: resume and audit large experiments.
Convenient debugging and result collection.
Supports reproducibility across hardware and job schedulers.

Supports multiple execution backends:

Interactive: Run jobs directly in the current R session
Multicore: Parallel execution on local CPU cores

SSH: Offload jobs to remote machines via SSH

HPC schedulers: SLURM, Torque/PBS, Load Sharing Facility
(LSF), etc.

Project Page: https://github.com/mllg/batchtools
Paper: https://doi.org/10.21105/joss.00135

Applied Machine Learning — 5/15

https://github.com/mllg/batchtools
https://doi.org/10.21105/joss.00135

CREATING AND CONFIGURING A REGISTRY

Purpose:
@ A registry object is used to access and exchange information: file paths,
job parameters, and computational events, ...
@ Stores all data in a single, portable directory for easy tracking and
reproducibility.
Initialization of a new registry:

library(batchtools)

reg = makeRegistry(
file.dir = "registry", # Directory accessible on all nodes
seed = 1 # Initial seed for reproducibility

)

Configure the system:

Set interactive mode and start jobs in external R sessions
reg$cluster.functions = makeClusterFunctionsInteractive(external = TRUE)

@ Each supported system has its own makeClusterFunctions* function.
Load an existing registry to continue work:

loadRegistry("registry")

Applied Machine Learning — 6/15

DEFINE JOBS

batchMap:
@ Like lapply or mapply

(x1,%2) X (y1,¥2) = (f(x1,11), (X2, y2))
10 jobs to calculate 1 +9,2+48,...,9+ 1

map
ids

function(i, j) i + j
batchMap (fun = map, i = 1:9, j = 9:1, reg = reg)

Stores function on file system

Creates jobs as rows in a data.table

Parameters also serialized into the data.table for fast access
All jobs get unique positive integers as IDs

reg = can be omitted in most cases. See 7getDefaultRegistry.

Applied Machine Learning — 7/15

SUBSET JOBS

Query Job IDs by Status and Parameters
@ Use find* functions to query job IDs by computational status:

e findError to get job IDs for failed jobs
findDone to get job IDs for successful jobs
findNotSubmitted to get job IDs in order resume jobs

@ Query job IDs by parameters with findJobs (pars) (here: iandj), e.g.,:

job = findJobs(i == 2 & j == 8)
job

Key: <job.id>

job.id

<int>

1: 2

@ Pass the data.table containing the job. ids to functions interacting
with the batch system, e.g., submitJobs(ids = job)

Applied Machine Learning — 8/15

SUBMIT JOBS

Creates R script files and job description files on the fly
Resources can be provided as named list

1 hour maximal execution time, about 2 GB of RAM
res = list(walltime = 60%60, memory = 2000)

... and submit
submitJobs (resources = res)

Submits all jobs per default

Subsets of jobs can be providing as data.table or vector

submitJobs(ids = 1:5, resources = res)

@ Collect/reduce results:

get results of each job in a list
reduceResultsList(ids = findDone())

get result of single job
loadResult(id = 1)

Applied Machine Learning — 9/15

SUPERVISE AND DEBUG

@ Quick overview of what is going on: getStatus()

Status for 9 jobs at 2019-10-10 17:49:48:
Submitted 9 (100.0%)
-- Queued 0 (0.0%)
-- Started 9 (100.0%)
---- Running : 0 (0.0%)
---- Domne 9 (100.0%)
---- Error 0 (C 0.0%)
---- Expired : 0 (0.0%)

@ Display log files with a customizable pager (less, vi, ...):
showLog(findErrors () [1])

@ You can also grepLogs (pattern)
@ Found a bug? killJobs (findRunning())
@ Run ajob in the current R session: testJob(id)

Applied Machine Learning — 10/ 15

EXPERIMENTS IN BATCHTOOLS

@ Purpose: Abstraction for typical statistical tasks.
@ Applying Algorithms to Problems:
e Ideal for simulations, benchmark experiments, sensitivity analyses,

e Simplifies workflow with a focus on job definition.
@ Scenarios:

e Compare machine learning algorithms on multiple datasets.
e Compare one/many estimation procedure(s) on simulated data.
o Compare optimizers on various objective functions.

Applied Machine Learning — 11/15

ABSTRACTION OF COMPUTER EXPERIMENTS

(intermediate) result

problem

static problem part]—>| dynamic problem function }vvvvv\l/vvvvvw
instance

algriihm function

problem design algorithm design

@ Problem Definition:

e Static part: Immutable R objects (e.g., matrices, data frames).

e Dynamic part: Arbitrary R functions (e.g., transformations of static
objects, data extraction from external sources, data generation
functions).

@ Parametrization: Specify experimental designs for problems and
algorithms.
@ Seeding and Reproducibility:

e Each step is automatically seeded.
e Random seeds are stored in a database for reproducibility.

Applied Machine Learning — 12/15

Y

EXPERIMENT DEFINITION STEPS

@ Add problems to registry: addProblem
o Efficient storage: Separation of static (data) and dynamic
(instance) problem parts.
@ Add algorithms to registry: addAlgorithm

e Problem instance gets passed to algorithm

e Can be connected with an experimental design (function
parameters)

e Return value will be saved on the file system

@ Add experiments to registry: addExperiments

o Experiment: problem instance + algorithm + algorithm parameters
e Job: Experiment + replication number

Applied Machine Learning — 13/15

A SIMPLE EXAMPLE

reg = makeExperimentRegistry("test_reg")
addProblem(name = "pl", data = 1, seed = 1,

fun = function(data, job) runif(data))
addAlgorithm(name = "al",

fun = function(job, data, instance) 2 * instance)
addAlgorithm(name = "a2",

fun = function(job, data, instance) data + instance)
addExperiments(repls = 2)
submitJobs ()
res = reduceResultsDataTable()
getJobPars () [res]

Key: <job.id>
FH job.id problem prob.pars algorithm algo.pars result

#it <int> <char> <list> <char> <list> <list>
1: 1 pl <list[0]> al <1ist[0]> 0.5310
#4# 2: 2 pl <list[0]> al <1ist[0]> 0.3698
3: 3 pl <list[0]> a2 <list[0]> 1.2655
4: 4 pl <list[0]> a2 <list[0]> 1.1849

Applied Machine Learning — 14 /15

SUMMARY

Reproducibility:
e Every computation is seeded.
e Seeds are stored in a data.table.

Extensibility:
e Easily add more problems or algorithms.
e Try different parameters or increase replications at any stage.

Portability: Data, algorithms, results, and job information in a single
directory.

Exchangeability: Share your file directory to allow others to extend your
study with their data sets and algorithms.

Simplifies working with batch systems.

Control batch systems interactively from within R (no shell required).
Facilitates reproducible research.

Enables easy exchange of code and results with others.

Applied Machine Learning — 15/15

