Applied Machine Learning

Feature Engineering:
mlir3pipelines

Learning goals
@ Introduction to mir3pipelines

@ Building blocks and the graph
structure




MLR3PIPELINES

Machine Learning Workflows:

@ Preprocessing: Feature extraction, feature selection, missing data
imputation,. . .

@ Ensemble methods: Model averaging, model stacking

@ mlr3: modular model fitting

= mlr3pipelines: modular ML workflows
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MACHINE LEARNING WORKFLOWS

— what do they look like?
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MACHINE LEARNING WORKFLOWS

— what do they look like?
@ Building blocks: whatis happening? — PipeOp
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MACHINE LEARNING WORKFLOWS

— what do they look like?
@ Building blocks: whatis happening? — PipeOp
@ Structure: in what sequence is it happening? — Graph
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MACHINE LEARNING WORKFLOWS

— what do they look like?
@ Building blocks: whatis happening? — PipeOp
@ Structure: in what sequence is it happening? — Graph

= Graph: PipeOps as nodes with edges (data flow) between them
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THE BUILDING BLOCKS
PipeOp: Single Unit of Data Operation

@ pip = po("scale") to construct
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THE BUILDING BLOCKS
PipeOp: Single Unit of Data Operation

@ pip = po("scale") to construct
@ pip$train(): process data and create pip$state

trai
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THE BUILDING BLOCKS
PipeOp: Single Unit of Data Operation

@ pip = po("scale") to construct
@ pip$train(): process data and create pip$state
@ pip$predict (): process data depending on the pip$state

trai
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THE BUILDING BLOCKS
PipeOp: Single Unit of Data Operation

@ pip = po("scale") to construct
@ pip$train(): process data and create pip$state
@ pip$predict (): process data depending on the pip$state

@ Multiple inputs or multiple outputs
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THE BUILDING BLOCKS

po = po("scale")
trained = po$train(list(task))
trained$output$head(3)

#> Species Petal.Length Petal.Width Sepal.Length Sepal.Width

#> <fctr> <num> <num> <num> <num>
#> 1: setosa =il & =il & -0.9 1.02
#> 2: setosa =il o & =il o & -1.1 -0.13
#> 3: setosa -1.4 =il & -1.4 0.33

head(po$state, 2)

#> $center
#> Petal.Length Petal.Width Sepal.Length Sepal.Width

#> 3.8 1.2 5.8 3.1
#>

#> $scale

#> Petal.Length Petal.Width Sepal.Length Sepal.Width
#> 1.77 0.76 0.83 0.44
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THE BUILDING BLOCKS

po = po("scale")
trained = po$train(list(task))
trained$output$head(3)

#> Species Petal.Length Petal.Width Sepal.Length Sepal.Width

#> <fctr> <num> <num> <num> <num>
#> 1: setosa =il & =il & -0.9 1.02
#> 2: setosa =il o & =il o & -1.1 -0.13
#> 3: setosa -1.4 =il & -1.4 0.33

smalltask = task$clone()

smalltask = smalltask$filter(1:3)
pred = po$predict(list(smalltask))
pred$output$data()

#> Species Petal.Length Petal.Width Sepal.Length Sepal.Width

#> <fctr> <num> <num> <num> <num>
#> 1: setosa =il & =il & -0.9 1.02
#> 2: setosa =il & =il & -1.1 -0.13
#> 3: setosa -1.4 =il o & -1.4 0.33
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THE STRUCTURE

Graph Operations

@ The %>>%-operator concatenates Graphs and PipeOps

%>>%
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LEARNERS AND GRAPHS

PipeOpLearner

@ Learner as a PipeQOp

@ Fits a model, output is Prediction

GraphLearner

@ Graph as a Learner
@ All benefits of m1r3: resampling, tuning, nested resampling, . ..

GraphLearner

. Factor Median PipeOp
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