
Algorithms and Data Structures

Big O
Misconceptions of Big O, further Landau
Symbols & Discussion

Learning goals
Misconceptions of Big O

Alternative notations

Complexity vs. empirical runtime

MISCONCEPTIONS OF BIG O

Misconception 1: f = O(g): The sign of equality means equality

Left: Function
Right: Function class → equality makes no sense
Formally correct: f ∈ O(g)

Misconception 2: Big O means that functions "have
approximately the same" runtime behaviour

f ∈ O(1) implies by definition also f ∈ O(n)
f ∈ O(g) only means that f does not grow faster than g, but
not that f grows as fast as g

© Algorithms and Data Structures – 1 / 7

MISCONCEPTIONS OF BIG O / 2

Misconception 3: Big O describes the runtime of an algorithm

Big O describes how well an algorithm scales
Big O is not an absolute measure of runtime - an algorithm
can have a shorter runtime for a small instance, but scale
much worse

Misconception 4: Big O is always the worst case

The notation is often used to describe the worst case
However Big O does not imply the worst case
Also best case and average case can be considered

© Algorithms and Data Structures – 2 / 7

ALTERNATIVE NOTATIONS

In addition to Big O notation another Landau symbol is used in
mathematics: The little o.
Informally f (x) = o(g(x)) means that f grows much slower than g.

Formal definition:

f (x) ∈ o(g(x))

if and only if
for each M > 0 there exists x0 such that

|f (x)| < M · |g(x)| for all x > x0.

© Algorithms and Data Structures – 3 / 7

ALTERNATIVE NOTATIONS / 2

Further we define for a ∈ R

f (x) ∈ o(g(x)) for x → a

only if for every M > 0 there is a d ∈ R such that for all x we have
|x − a| < d

|f (x)| < M · |g(x)|

For g(x) ̸= 0, it is equivalent to

lim
x→a

∣∣∣∣ f (x)
g(x)

∣∣∣∣ = 0

© Algorithms and Data Structures – 4 / 7

ALTERNATIVE NOTATIONS / 3

Overview: Landau symbols

Notation Definition Analog to
f (n) ∈ O(g(n)) see above ≤
f (n) ∈ o(g(n)) see above <
f (n) ∈ Ω(g(n)) g(n) ∈ O(f (n)) ≥
f (n) ∈ ω(g(n)) g(n) ∈ o(f (n)) >
f (n) ∈ Θ(g(n)) f (n) ∈ O(g(n)) and g(n) ∈ O(f (n)) =

Left panel O(f (n)), middle panel Ω(f (n)) and right panel Θ(f (n))

© Algorithms and Data Structures – 5 / 7

COMPLEXITY VS. EMPIRICAL RUNTIME

In this chapter we dealt with the complexity of algorithms:

How does an algorithm scale with regards to the required
resources?

What happens when the problem gets bigger?

What is the theoretical runtime complexity of an algorithm?
(Knowledge / Estimation / Evidence)

Bubble sort has a worst-case runtime of O(n2)
Matrix multiplication of two regular n × n matrices has a
runtime complexity of O(n3)
The Traveling Salesman Problem is NP-complete
...

It is often helpful to test the complexity of an algorithm empirically!

© Algorithms and Data Structures – 6 / 7

COMPLEXITY VS. EMPIRICAL RUNTIME / 2

But: How many resources does my algorithm really need?
→ empirical runtime analysis:

Measurement of the runtime of an implementation on a given
machine

How much time (or memory etc.) is needed when the code is
executed?

→ Depends on the machine, the compiler/interpreter,
dependencies, and the code itself

The empirical runtime can be measured for a fixed input quantity,
but can also be systematically analyzed for different input
quantities / problem instances

When computing on a cluster, the cloud, or a machine on which
several people are computing, the empirical run-time is usually
influenced by the actions of other users

© Algorithms and Data Structures – 7 / 7

