
ONLINE CONVEX OPTIMIZATION

One of the most relevant instantiations of the online learning problem is
the problem of online convex optimization (OCO), which is characterized
by a loss function

: A×Z → R,

which is convex w.r.t. the action, i.e., a 7→ (a, z) is convex for any z ∈ Z.

Note that both OLO and OQO belong to the class of online convex
optimization problems:

Online linear optimization (OLO) with convex action spaces:

(a, z) = a⊤z

is a convex function in a ∈ A, provided A is convex.

Online quadratic optimization (OQO) with convex action spaces:

(a, z) =
1
2
||a − z||22

is a convex function in a ∈ A, provided A is convex.
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ONLINE GRADIENT DESCENT: MOTIVATION

We have seen that the FTRL algorithm with the 2 norm regularization
ψ(a) = 1

2η ||a||22 achieves satisfactory results for online linear
optimization (OLO) problems, that is, if (a, z) = Llin(a, z) := a⊤z, then
we have

Fast updates — If A = Rd , then

aFTRLt+1 = aFTRLt − η zt , t = 1, . . . ,T ;

Regret bounds — By an appropriate choice of η and some (mild)
assumptions on A and Z, we have

RFTRL

T = o(T ).
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ONLINE GRADIENT DESCENT: MOTIVATION
Apparently, the nice form of the loss function Llin is responsible for the
appealing properties of FTRL in this case. Indeed, since ∇aLlin(a, z) = z
note that the update rule can be written as

aFTRLt+1 = aFTRLt − η zt = aFTRLt − η∇aLlin(aFTRLt , zt).

Interpretation: In each time step t + 1, we
are following the direction with the steepest de-
crease of the most recent loss (represented by
−∇Llin(aFTRLt , zt)) from the current ”position”
aFTRLt with the step size η

⇒ Gradient Descent.
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ONLINE GRADIENT DESCENT: MOTIVATION

Question: How to transfer this idea of the Gradient Descent for the
update formula to other loss functions, while still preserving the regret
bounds?

Solution (for convex losses): Recall the equivalent characterization of
convexity of differentiable convex functions:

f : S → R is convex ⇔ f (y) ≥ f (x) + (y − x)⊤∇f (x) for any x , y ∈ S

⇔ f (x)− f (y) ≤ (x − y)⊤∇f (x) for any x , y ∈ S.

This means if we are dealing with a loss function : A×Z → R, which is
convex and differentiable in its first argument (A has also to be convex),
then

(a, z)− (ã, z) ≤ (a − ã)⊤ ∇a(a, z), ∀a, ã ∈ A, z ∈ Z.
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ONLINE GRADIENT DESCENT: MOTIVATION

Reminder: (a, z)− (ã, z) ≤ (a − ã)⊤ ∇a(a, z), ∀a, ã ∈ A, z ∈ Z.

Let z1, . . . , zT arbitrary environmental data and a1, . . . , aT be some arbitrary
action sequence. Substitute z̃t := ∇a(at , zt) and note that

RT (ã) =
T∑

t=1

(at , zt)− (ã, zt) ≤
T∑

t=1

(at − ã)⊤ ∇a(at , zt)

=
T∑

t=1

(at − ã)⊤ z̃t =
T∑

t=1

a⊤
t z̃t − ã⊤ z̃t =

T∑
t=1

Llin(at , z̃t)− Llin(ã, z̃t).

Conclusion: The regret of a learner with respect to a differentiable and convex
loss function is bounded by the regret corresponding to an online linear
optimization problem with environmental data z̃t = ∇a(at , zt).

We know: Online linear optimization problems can be tackled by means of the
FTRL algorithm!

⇝ Incorporate the substitution z̃t = ∇a(at , zt) into the update formula of FTRL with
squared L2-norm regularization.
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T∑

t=1
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Conclusion: The regret of a learner with respect to a differentiable and convex
loss function is bounded by the regret corresponding to an online linear
optimization problem with environmental data z̃t = ∇a(at , zt).

We know: Online linear optimization problems can be tackled by means of the
FTRL algorithm!

⇝ Incorporate the substitution z̃t = ∇a(at , zt) into the update formula of FTRL with
squared L2-norm regularization.

© Advanced Machine Learning – 5 / 6



ONLINE GRADIENT DESCENT: DEFINITION

The corresponding algorithm which chooses its action according to these
considerations is called the Online Gradient Descent (OGD) algorithm
with step size η > 0. It holds in particular,

aOGDt+1 = aOGDt − η∇a(aOGDt , zt), t = 1, . . .T . (1)

(Technical side note: For this update formula we assume that A = Rd . Moreover, the first action aOGD1 is arbitrary. )
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