KRONECKER KERNEL RIDGE REGRESSION

@ In MTP with target features, we often use kernel methods.
@ Consider the following pairwise model representation in the primal:

fx.1) = w' (6(x) @ ¥(1)),

where ¢ is feature mapping for features and 1) is feature mapping
for target (features) and ® is Kronecker product.
@ This yields Kronecker product pairwise kernel in the dual:

f(X,t) = Z A(x't) * k(X,X/) ) g(tvt,) = Z a(x’,t’)r((x’t)v (X/,t,)),

(x'.¥)eD (x',t)eD
where k is kernel for feature map ¢, g kernel for feature map
and oy v are dual parameters determined by:
min ||Ta — 2|2 + Aa' Ter, where z = vec(Y)
o

@ Commonly used in zero-shot learning.

Stock et al., A comparative study of pairwise learning methods based on kernel ridge regression, Neural Computation 2018.
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EXPLOITING RELATIONS IN REGULARIZATION

Graph Tree Similarity
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@ Graph-based regularization for graph-type relations in targets:

I
. 2 2
min [|Y — ®O||F + Aﬁ; m/eZN(m) 16m — Omr|I*,
where N(j) is the set of targets related to target j.
@ The graph or tree is given as prior information.
@ Can be extended to a weighted version aware of the similarities

Gopal and Yang, Recursive regularization for large-scale classification with hierarchical and graphical dependencies, KDD 2013.
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HIERARCHICAL MULTI-LABEL CLASSIFICATION
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@ Hierarchies can also be used to define specific loss functions,
such as the Hierarchy-loss:

[—Hier(ya f) = Z Cm ﬂ[anc(ym):anc(j/m)]a
m:ym#Jm

@ This is rather common in multi-label classification problems.

Bi and Kwok, Bayes-optimal hierarchical multi-label classification, IEEE Transactions on Knowledge and Data Engineering, 2014.
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PROBABILISTIC CLASSIFIER CHAINS

@ Estimate the joint conditional distribution P(y | x).
@ For optimizing the subset 0/1 loss:

Lo/1 (v,9) = ]l[y;é?]
@ Repeatedly apply the product rule of probability:

i
Py |x) = [[PWm %1, - yme1).

j=m

@ Learning relies on constructing probabilistic classifiers for

]P(ym’xayh' .. aymf1) )

independently foreachm=1,..., 1.
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PROBABILISTIC CLASSIFIER CHAINS

@ Inference relies on exploiting a probability tree:

P(yy =0|x) =04 P(yi=1|x)=08

y2=0 y2 =1 y2=0 yo =1

(P(y2=0| y1=0,x)=0.0] P(yo=1 | y1=0, x)=1.0Y P(y2=0 | y1=1,%)=0.4)P(yo=1 | y1=1,x)=0.6)
P(y=(0,0)|x)=0  P(y=(0,1) | x)=0.4 P(y=(1,0) | x)=0.24 P(y=(1,1)|x)=0.36

@ For subset 0/1 loss one needs to find h(x) = arg max, P(y | x).
@ Greedy and approximate search techniques with guarantees exist.
@ Other losses: compute the prediction on a sample from P(y | x).

Dembczynski et al., An analysis of chaining in multi-label classification, ECAI 2012.
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LOW-RANK APPROXIMATION

High rank matrix Low rank matrix

@ Low rank = some structure is shared across targets
@ Typically perform low-rank approx of param matrix:

mein |Y — ®0|2 + Arank(©)

Chen et al., A convex formulation for learning shared structures from multiple tasks, ICML 2009.
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LOW-RANK APPROXIMATION

©: parameter matrix of dimensionality p x /
p: the number of (projected) features
I: the number of targets

Assume a low-rank structure of A:
U x |74 =

[JXH}HH:{

We can write © = UV and ©x = UVx
Vis a p x | matrix

Uis an ] x | matrix

Tis the rank of ©
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