COST-SENSITIVE LEARNING: IN A NUTSHELL

@ Cost-sensitive learning:
@ Classical learning: data sets are balanced, and all errors have equal costs
@ We now assume given, unequal cost
@ And try to minimize them in expectation
@ Applications:
@ Medicine — Misdiagnosing as healthy vs. having a disease
@ (Extreme) Weather prediction — Incorrectly predicting that no hurricane occurs
@ Credit granting — Lending to a risky client vs. not lending to a trustworthy client.

@ In these examples, the costs of a false
negative is much higher than the

Truth costs of a false positive
Default  Pays Back P :
Default 0 10
Pred. Pays Back | 1000 0
Y @ In some applications, the costs are

unknown ~ need to be specified by
experts, or be learnt.
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COST MATRIX

@ Input: cost matrix C

True Class y

1 2 o 9
Classification 1 c(1,1) c(1,2) . Cc(1,9)
2 c(2,1) c(2,2) . c(2, 9)

y
g c(g,1) c(g,2) . c(g, )

@ C(j, k) is the cost of classifying class k as j,
@ 0-1-loss would simply be: C(j, k) = [k
@ C designed by experts with domain knowledge

@ Too low costs: not enough change in model, still costly errors
© Too high costs: might never predict costly classes
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COST MATRIX FOR IMBALANCED LEARNING

@ Common heuristic for imbalanced data sets: X
. n;i .
o C(j,k) = 7. with n < nj,
misclassifying a minority class k as a majority class j X
o C(j, k) = 1 with n; < ny,
misclassifying a majority class k as a minority class j X X

e 0 for a correct classification

@ Imbalanced binary classification:

True class
y=1 y=-1
Pred. y =1 0 1
A n—
class y = -1 o 0

@ So: much higher costs for FNs
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MINIMUM EXPECTED COST PRINCIPLE

@ Suppose we have:

e acost matrix C
e knowledge of the true posterior p(- | x)

@ Predict class j with smallest expected costs when marginalizing
over true classes:

g
Ex~p(. | x(CU,K)) = p(k|x)C
k=1

@ If we trust we trust a probabilistic classifier, we can convert its
scores to labels:

g

h(x) := arg manwk C(j, k).

] 7gk1

@ Can be better to take a less probable class (CEEIERETD)
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https://dl.acm.org/doi/10.5555/1642194.1642224

OPTIMAL THRESHOLD FOR BINARY CASE

@ Optimal decisions do not change if

e Cis multiplied by positive constant
e C is added with constant shift

@ Scale and shift C to get simpler C':

True class
y=1 y=-1
Pred. y = 1 c'(1,1) 1
class j = -1 C/(—‘I, 1) 0

where

Cc(—1,1)—C(—1,—1
o O(-1,1) = c§1,—1;—c§—1,—1g
c(1,1)—C(—1,—1
° C'011) = g orion

@ We predict x as class 1 if

Exp(. | 0(C'(1,K)) < Exop(. | 0(C'(=1,K))
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OPTIMAL THRESHOLD FOR BINARY CASE /2

@ Let’s unroll the expected value and use C’:

p(_1 |X)C,(17_1)+p(1 |X)C,(171) Sp(_1 ‘X)C/(_17_1)+p(1 |X)C,(_171)
[ (1 10011+ p(1[)C(1,1) < p(1 | X)C(~1,1)
1
=PI 2 Gy oa )+ 1
c(1,—1) - C(—1,-1) _
= PIX) 2 Gy = ca ) ot =) = o1, =1)

*
C

@ Ifeven C(1,1) = C(—1,—1) = 0, we get:

c(1,-1)
PUIX) = G4y + o1, 1)

@ Optimal threshold ¢* for probabilistic classifier

h(X) =2 1[77()()20*] —1
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