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THE ONLINE LEARNER

@ In the following, we will consider a first (online) learner for online learning
problems. Note that a learner can be defined in a formal way.

@ Indeed, a learner within the basic online learning protocol, say Algo, is a
function

A:
f

that returns the current action based on (the loss and) the full history of
information so far:

(Z xA) = A

T
=1

Algo Algo o o
a.; =Alzy,a %, z. a8 ", ..., Zi. 8 7 ;
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THE ONLINE LEARNER

@ In the following, we will consider a first (online) learner for online learning
problems. Note that a learner can be defined in a formal way.

@ Indeed, a learner within the basic online learning protocol. say Algo. is a
function

T
A: U(Z xA)f = A
=1
that returns the current action based on (the loss ‘and) thedull history of
information so far:

A1 " AL AL A1
b =AZ1 8y By s Z.8 o)

@ In the extended online learning scenario, where the environmental data
consists of two parts, z, = (2", z'*)), and the first part is revealed
before the action in t is performed, we have that

Algo Algo Algo Algo _[(1) .
a., =Az.a " 28,7 ,..., 2.8, 7 ,2.4:)
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THE ONLINE LEARNER

@ Itwilkbeldesired thatthe online learner admits a-cheap upodate formula) O O x
which:is inéremental 2i e ronly @portion:of the previous datais necessary
o lodetermine the next action, nli \Mind WA : x O

@ Forinstance, there exists a functionu : Z x A — A such that

2,/ &\ z.d"%) = u(z., aM®).

X X

Algo
A(Z] ) 81 &

hat 111 } Irret | I | Al
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FOELOW THE LEADER:ALGORITHM

® A simnlo.algarithm to ake online learning problams is the. Follaw the leader O 0O X
(Ffﬂl-%‘#g‘?f""?"] ental, i.e., only a portion of the previous data is necessary
@ The agerithm takes asiitsaction aj - & A in time step t = 2, the element which x O

has the minimal cumulatlve loss so far over the prevnous t— 1 time periods:

@ For instance, there exists afunction u : z | such that
]
|

FargmmZ(az_ u(z,. ae°) X x

ac A

(Technical side nate: if here are more than one minimum, then one of tham & chosen. Moreover, 2}~ & bivary. )
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FOLLOW THE LEADER ALGORITHM

@ Asimple algorithm to tackle online learning problems is the Follow the leader
(FTL) algorithm.

@ The algorithm takes as its action ai™ ¢ Aintime step { > 2. the element which
has the minimal cumulative loss so far over the previous { — 1 time periods:

-1
a;- @argmin Z (alzs):
ac A -

(Technical side note: if there are more than one minimum, then one of them & chosen. Maoroover, Jf‘.‘ & xbivary. )

@ Interpretation: The action &' is the current [ ]
“leader” of the actions in A in time step ¢, as' | \ 71 oSS
it has the smallest cumulative loss (error) so far. f \/ |

]
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FOLLOW THE LEADER ALGORITHM

@ A Follow the leader

-
. atearg minZ (a.z.).

aTA

@ 1 541 P

@ Note that the action selection rule of FTL is natural and has much in‘common with
the classical batch learning approaches based.on empirical risk minimization.

@ This results in a first issué regarding ‘the com\pmaﬁonﬁme for the action, because
the longer we run this algorithm, the slower it becomes (in general) due to the
growth of the seen data.
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FTL:AHELPFUEAEMMALCORITHM

emma: Let a™. &™. ... be the sequence of actions used by the FTL
lgorithm for the environmental q’atgﬁequeqoe“zl‘. 22y ...

@ Note that ti tior tion 1 f FTL is natural and has much in common witt

__ [
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FTL: A HELPFUL LEMMA

Lemma: Let &™. &™. ... be the sequence of actions used by the FTL
algorithm for the environmental data sequence 2y, 2z, . ...
Then, for all 2 € A it holds that

T

RTME) =Y (@™ 2) - (a.2)

<30 (@™ 2) ~ (4T 2)
T

B erzl (al;n' z) - Zr

o
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FTL: A HELPFUL LEMMA

Lemma: Let &™. &™. ... be the sequence of actions used by the FTL
algorithm for the environmental data sequence 2y, 2z, . ...
Then, for all 2 € A it holds that

FETH(R) - Zr (8™, z) — (&:20))
Z ((&™. z) — (&1 20))
N @) - Y (ET,

In particular,

R];TL Zr’ 1(ar}”TL zr] 72: (a]r"l" Zr)

o
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FTL: A HELPFUL LEMMA

Lemma: Let &™. &™. ... be the sequence of actions used by the FTL
algorithm for the environmental data sequence 2y, 2z, . ...
Then, for all 2 € A it holds that

R =Y. (@™ 2) - (3:2)
S (& 2) — (6T 2))
N @) - Y (ET,

In particular,
T T
RN Hamz) =) (@)

Interpretation: the regret of the FTL algorithm is by the difference of

cumulated losses of itself compared to its one-step lookahead cheater version.
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FTL: A HELPFUL LEMMA

Peoof::n the following. we denotesalthea™ ol asimply byaase.k
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FTL: A HELPFUL LEMMA

Proof: In the following, we denote &™. &™. . .. simply by a,, &, . ..
First, note that the assertion can be restated as follows

T

T
R?L(é) *Z((ar z)—(a z)) Z ar, zt) — (ar+1. zt))
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FTL: A HELPFUL LEMMA

Proof: In the following, we denote &™. &™. . .. simply by a,, &, . ..
First, note that the assertion can be restated as follows

T T
TRTE(E) > X (taca) (3, 2)) <D ((anzd) - (a4, 2))

T T
S Z far122) E\Z(a z).

Hence, we will verify the inequality ZL (gr-1,2) < ZL (2, z;), which
implies the assertion.

~~ This will be done by induction over T.
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FTL: A HELPFUL LEMMA

0 0 X
Reminder: ar-e araggr‘nlin ; (a,2s). x O

X X

Initial Step:“T = 1_It holdsthat

T
| Z(af-LZ()ﬁ (8;3.21) =
i
]

AN

argmin (&, 21), 2 )
ac A

= min (8, 2,). £ (£, 2)) ( Z:ﬂ (é,z,))

foralfa'="A.
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FTL: A HELPFUL LEMMA

-1
FeReminder: o &' &argmin Z:(azs)-
s=1

ac A

Initial step: T = 1. It holds that
T
N g(‘am.z,) (&, 2y) = (argg;iﬂ(a. 21).21)

~min(a.2) < (820 (=3, (22))

forall a € A.
Induction Step: 7T — 1 — T. Assume that for any a € A it holds that
T—1 T—1
Zr:‘ (81, 21) = Zr:‘ (& z).
Then, the following holds as well (adding (ar-4, zr) on both sides)
T

T—1
Zr:‘ (ar=1.2¢) < (ar-1,27) +Zr:‘ (a,z;), Vae A
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FTL: A HELPFUL LEMMA

T

Reminder (1): Zr 1 (@1, 2) = (ar-1327) + 2;1 (a,z).

t—1
Reminder (2): & (h4& arg min Z(a. Z:)-
acA T

| |
o
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FTL: A HELPFUL LEMMA

S5 5 O 0 X
Rﬁemihderlﬁ): o (8(_.1..2;) = (ar-1 .ZT) + » (é,z;)_
s X L O

I Reminder (2): &"te argmln E alzg):

e X X

Using (1) with a = ar. yields

T T

T T
Z ar1,2) < Z ar.1,2;) Z (argEiqZ(a.z,).z,)
t=1 =1

= t=1
T

7manaZf < az;)

t=1

forall a e A. O
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FTL.FOR'OQO PROBLEMS

@ One popular instantiation of the online learning problem is the problem of onfine
RAuAdkaticgotimizationOQO). (5 | 2) < 1(a; | z;)+ N

@ In its most general form, the loss function is thereby defined as~

Reminder (2): ‘ {4k 2)'%s 3 |l>14 "Zlﬂﬁ‘- ‘

Usinguheresd 2 C R7., yield:

\‘;H ) \‘;H ) \‘;; T \\‘;H

for all a

__ I
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FTL FOR OQO PROBLEMS

@ One popular instantiation of the online learning problem is the problem of onfine
quadratic optimization (OQO).
@ In its most general form, the loss function is thereby defined as

an, 20) = | — 2

where A. Z ¢ RY.

@ Proposition: Using FTL on any online quadratic optimization problem with
A=R%and V = sup ||z||,. leads to a regret of

ZEZ

RFY < 4V (log(T) +1).
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FTL FOR OQO PROBLEMS

@ One popular instantiation of the online learning problem is the problem of onfine
quadratic optimization (OQO).
@ In its most general form, the loss function is thereby defined as

(an, z1)) = le][an - a|%,

where A. Z ¢ RY.

@ Proposition: Using FTL on any online quadratic optimization problem with
A=Rand V = sup||z||,, leads to a regret of
zEZ

AT < 4V2 (log(T) +1).

@ This result is satisfactory for three reasons:

@ The regret is definitely sublinear, thatis, A7~ = o T).

e We just have a mild constraint on the online quadratic optimization
problem, namely that ||z||, < V holds for any possible environmental data
instance z € Z.

o The action a,”'L is simply the empirical average of the environmental data
seensofar: g™ = 5"z,

=1 &g
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