In the following, we will consider a first (online) learner for online learning problems. Note that a learner can be defined in a formal way.

# Simple Online Learning Algorithms





### Learning goals

- Formalization of online learning algorithms
- Getting to know the FTL algorithm
- See that it works for online quadratic optimization (OQO problems

- In the following, we will consider a first (online) learner for online learning problems. Note that a learner can be defined in a formal way.
- Indeed, a learner within the basic online learning protocol, say Algo, is a function

$$A: \bigcup_{t=1}^{T} (\mathcal{Z} \times \mathcal{A})^{t} \to \mathcal{A}$$

that returns the current action based on (the loss and) the full history of information so far:

$$a_{t+1}^{\mathtt{Algo}} = A(z_1, a_1^{\mathtt{Algo}}, z_2, a_2^{\mathtt{Algo}}, \dots, z_t, a_t^{\mathtt{Algo}};).$$



- In the following, we will consider a first (online) learner for online learning problems. Note that a learner can be defined in a formal way.
- Indeed, a learner within the basic online learning protocol, say Algo, is a function

$$A: \bigcup_{t=1}^{T} (\mathcal{Z} \times \mathcal{A})^{t} \to \mathcal{A}$$

that returns the current action based on (the loss land) the full history of information so far:

$$a_{t+1}^{\text{Algo}} = A(z_1, a_1^{\text{Algo}}, z_2, a_2^{\text{Algo}}, \dots, z_t, a_t^{\text{Algo}}, )).$$

 In the extended online learning scenario, where the environmental data consists of two parts, z<sub>t</sub> = (z<sub>t</sub><sup>(1)</sup>, z<sub>t</sub><sup>(2)</sup>), and the first part is revealed before the action in t is performed, we have that

$$a_{t+1}^{\mathtt{Algo}} = \textit{A}(z_1, a_1^{\mathtt{Algo}}, z_2, a_2^{\mathtt{Algo}}, \dots, z_t, a_t^{\mathtt{Algo}}, z_{t+1}^{(1)};)$$



- It will be desired that the online learner admits a cheap update formula, g
  which is incremental a learner a portion of the previous data is necessary
- to determine the next action basic online learning protocol, say Algo, is a
- Forcinstance, there exists a function u : Z × A → A such that

$$A(z_1,a_1^{\mathtt{Algo}},z_2,\overset{A_1}{a_2}\overset{I_{go}}{\underset{t=1}{\overset{(\mathcal{Z}}{\overset{\times}{\overset{\times}}{\overset{\times}}}}},z_t,\overset{A_1}{a_t^{\mathtt{Algo}}};\overset{A_1}{\overset{\times}{\overset{\times}}}=u(z_t,a_t^{\mathtt{Algo}}).$$

that returns the current action based on (the loss L and) the full history of information so far:

$$a_{t+1}^{\text{Algo}} = A(z_1, a_1^{\text{Algo}}, z_2, a_2^{\text{Algo}}, \dots, z_t, a_t^{\text{Algo}}; L).$$

• In the extended online learning scenario, where the environmental data consists of two parts,  $z_t = (z_t^{(1)}, z_t^{(2)})$ , and the , we have that

$$a_{t+1}^{\text{Algo}} = A(z_1, a_1^{\text{Algo}}, z_2, a_2^{\text{Algo}}, \dots, z_t, a_t^{\text{Algo}},$$
; L)



## **FOLLOW THE LEADER ALGORITHM**

- A simple algorithm to tackle online learning problems is the Follow the leader, (FTL) algorithm nental, i.e., only a portion of the previous data is necessary
- The algorithm takes as its action a<sup>FTL</sup><sub>t</sub> ∈ A in time step t ≥ 2, the element which has the minimal cumulative loss so far over the previous t − 1 time periods:
- For instance, there exists a function  $u: \mathbb{Z} \times \mathcal{A} \to \mathcal{A}$  such that

$$A(z_1, a_1^{\text{Algo}}, z_2, a_2^{\text{FIA}} \in \underset{a \in \mathcal{A}}{\operatorname{arg min}} \sum_{s=1}^{t-1} (a_1 z_s) = u(z_t, a_t^{\text{Algo}}).$$

(Technical side note: if there are more than one minimum, then one of them is chosen. Moreover, at the is arbitrary.)



## FOLLOW THE LEADER ALGORITHM

- A simple algorithm to tackle online learning problems is the Follow the leader (FTL) algorithm.
- The algorithm takes as its action a<sub>t</sub><sup>FTL</sup> ∈ A in time step t ≥ 2, the element which has the minimal cumulative loss so far over the previous t − 1 time periods:

$$a_1^{\text{FTL}} \underset{\mathbf{a} \in \mathcal{A}}{\text{erg min}} \sum_{s=1,1}^{t+1} \mathbf{\hat{a}}(z_s) z_s).$$

(Technical side note: if there are more than one minimum, then one of them is chosen. Moreover,  $a_1^{\rm PTL}$  is arbitrary.)

 Interpretation: The action a<sub>t</sub><sup>FTL</sup> is the current "leader" of the actions in A in time step t, as in the smallest cumulative loss (error) so far.





# **FOLLOW THE LEADER ALGORITHM**

- A simple algorithm to tackle online learning problems is the Follow the leader (FTL) algorithm.  $a_t^{FTL} \in \arg\min \sum (a, z_s)$ .
- The algorithm takes as its action  $a_t^{\text{IEA}} \in A$  in time step  $t \geq 2$ , the element which
- Note that the action selection rule of FTL is natural and has much incommon with the classical batch learning approaches based on empirical risk minimization.
- This results in a first issue regarding the computation time for the action, because
  the longer we run this algorithm, the slower it becomes (in general) due to the
  growth of the seen data.







# FTL:A HELPFUE LEMMALGORITHM

**Lemma:** Let  $a_1^{\text{FTL}}, a_2^{\text{FTL}}, \ldots$  be the sequence of actions used by the FTL algorithm for the environmental data sequence  $Z_1, Z_2, \ldots$ 

- Note that the action selection rule of FTL is natural and has much in common with the classical batch learning approaches based on empirical risk minimization.
- This results in a first issue regarding the computation time for the action, because the longer we run this algorithm, the slower it becomes (in general) due to the growth of the seen data.



**Lemma:** Let  $a_1^{\text{FTL}}, a_2^{\text{FTL}}, \ldots$  be the sequence of actions used by the FTL algorithm for the environmental data sequence  $z_1, z_2, \ldots$ 

Then, for all  $\tilde{a} \in A$  it holds that

$$R_{T}^{\text{FTL}}(\tilde{\mathbf{a}}) = \sum_{t=1}^{T} ((a_{t}^{\text{FTL}}, z_{t}) - (\tilde{\mathbf{a}}, z_{t}))$$

$$\leq \sum_{t=1}^{T} ((a_{t}^{\text{FTL}}, z_{t}) - (a_{t+1}^{\text{FTL}}, z_{t}))$$

$$= \sum_{t=1}^{T} (a_{t}^{\text{FTL}}, z_{t}) - \sum_{t=1}^{T} (a_{t+1}^{\text{FTL}}, z_{t}).$$



**Lemma:** Let  $a_1^{\text{FTL}}, a_2^{\text{FTL}}, \ldots$  be the sequence of actions used by the FTL algorithm for the environmental data sequence  $z_1, z_2, \ldots$ . Then, for all  $\tilde{a} \in \mathcal{A}$  it holds that

$$PR_{T}^{\text{FIL}}(\tilde{\boldsymbol{a}}) = \sum_{t=1}^{T} \left( \left( \left( \boldsymbol{a}_{t}^{\text{FIL}}, \boldsymbol{z}_{t} \right) - \left( \tilde{\boldsymbol{a}}_{t}^{\text{FIL}} \boldsymbol{z}_{t} \right) \right) \right)$$

$$\leq \sum_{t=1}^{T} \left( \left( \left( \boldsymbol{a}_{t}^{\text{FIL}}, \boldsymbol{z}_{t} \right) - \left( \boldsymbol{a}_{t+1}^{\text{FILL}} \boldsymbol{z}_{t} \right) \right) \right)$$

$$= \sum_{t=1}^{T} \left( \boldsymbol{a}_{t}^{\text{FILL}}, \boldsymbol{z}_{t} \right) - \sum_{t=1}^{T} \left( \boldsymbol{a}_{t+1}^{\text{FILL}} \boldsymbol{z}_{t} \right).$$

In particular,

$$R_T^{\text{FTL}} \le \sum_{t=1}^T (a_t^{\text{FTL}}, z_t) - \sum_{t=1}^T (a_{t+1}^{\text{FTL}}, z_t)$$



**Lemma:** Let  $a_1^{\text{FTL}}, a_2^{\text{FTL}}, \ldots$  be the sequence of actions used by the FTL algorithm for the environmental data sequence  $z_1, z_2, \ldots$ . Then, for all  $\tilde{a} \in \mathcal{A}$  it holds that

$$\begin{aligned} & FR_T^{\text{FTL}}(\tilde{\boldsymbol{a}}) = \sum_{t=1}^{T} \left( \left( a_t^{\text{FTL}}, z_t \right) - \left( \tilde{\boldsymbol{a}}_t^{\text{ZZ}} z_t \right) \right) \\ & \leq & \sum_{t=1}^{T} \left( \left( a_t^{\text{FTL}}, z_t \right) - \left( a_{t+1}^{\text{FTLT}} z_t \right) \right) \\ & = & \sum_{t=1}^{T} \left( a_t^{\text{FTL}}, z_t \right) - \sum_{t=1}^{T} \left( a_{t+1}^{\text{FTLT}} z_t \right) \right). \end{aligned}$$

In particular,

$$= R_T^{\text{FTL}} \sum_{t=1}^{T} \underbrace{L(a_t^{\text{FTL}}, z_t) - \sum_{t=1}^{T} (a_{t+1}^{\text{FTL}}, z_t) }$$

Interpretation: the regret of the FTL algorithm is bounded by the difference of cumulated losses of itself compared to its one-step lookahead cheater version.



**Proof:** an the following, we denote  $a_1^{\text{TL}}$ ,  $a_2^{\text{TL}}$ , of a simply by:  $a \nmid y a_2^{\text{TL}}$ , e.FTL algorithm for the environmental data sequence  $z_1, z_2, \ldots$ . Then, for all  $\bar{a} \in \mathcal{A}$  it holds that

$$\begin{split} R_{T}^{\text{FTL}}(\tilde{a}) &= \sum_{t=1}^{T} \left( L(a_{t}^{\text{FTL}}, z_{t}) - L(\tilde{a}, z_{t}) \right) \\ &\leq \sum_{t=1}^{T} \left( L(a_{t}^{\text{FTL}}, z_{t}) - L(a_{t+1}^{\text{FTL}}, z_{t}) \right) \\ &= \sum_{t=1}^{T} L(a_{t}^{\text{FTL}}, z_{t}) - \sum_{t=1}^{T} L(a_{t+1}^{\text{FTL}}, z_{t}). \end{split}$$

In particular,

$$R_T^{\text{FTL}} \leq \sum_{t=1}^T L(a_t^{\text{FTL}}, z_t) -$$

Interpretation: the regret of the FTL algorithm is bounded by the difference of cumulated losses of itself compared to



**Proof:** In the following, we denote  $a_1^{\text{FTL}}, a_2^{\text{FTL}}, \dots$  simply by  $a_1, a_2, \dots$  First, note that the assertion can be restated as follows

$$R_{T}^{\text{FTL}}(\tilde{a}) = \sum_{t=1}^{T} ((a_{t}, z_{t}) - (\tilde{a}, z_{t})) \leq \sum_{t=1}^{T} ((a_{t}, z_{t}) - (a_{t+1}, z_{t}))$$

$$\Leftrightarrow \sum_{t=1}^{T} (a_{t+1}, z_{t}) \leq \sum_{t=1}^{T} (\tilde{a}, z_{t}).$$



**Proof:** In the following, we denote  $a_1^{\text{FTL}}, a_2^{\text{FTL}}, \dots$  simply by  $a_1, a_2, \dots$  First, note that the assertion can be restated as follows

$$\begin{aligned} R_{T}^{\text{FRI}}R_{T}^{\text{ETL}}(\tilde{\boldsymbol{a}}) & \stackrel{T}{\underset{t=|t=1}{\sum}} \left( (a_{t}, z_{t}) - L(\tilde{\boldsymbol{a}}, z_{t}) \right) \leq \sum_{t=1}^{T} \left( (a_{t}, z_{t}) - (a_{t}, z_{t}) \right) \\ & \Leftrightarrow \sum_{t=|t=1}^{T} \left( (a_{t+1}, z_{t}) \right) \leq \sum_{t=t=1}^{T} \left( \tilde{\boldsymbol{a}}, z_{t} \right). \end{aligned}$$



→ This will be done by induction over T.



Proof: In the following, we denote 
$$a_1^{\text{FTL}}, a_2^{\text{FTL}}, \dots$$
 simply by  $a_1, a_2, \dots$  First, note that the assertion can be restated as follows Reminder:  $a_t^{\text{FTL}} \in \arg\min_{a \in \mathcal{A}} \sum_{s=1}^{t} (a, z_s).$  Initial step:  $a_t^{\text{FTL}} = \sum_{t=1}^{t} \left( a_t \cdot a_t \cdot$ 



 $\rightsquigarrow$  This will be done by induction over T.

**ReReminder:** 
$$a_t^{\text{FTL}} \in \operatorname{argmin} \sum_{s=t-1}^{t+t-1} \hat{a}(z_s) z_s$$
.

**Initial step:** T = 1. It holds that

$$\sum_{t=|t|=1}^{T} (a_{t+1}, z_t) = L(a_2, z_1) = L\left(\underset{\tilde{a} \in \mathcal{A}}{\operatorname{argmin}}(\tilde{a}(z_1), z_1)\right)$$

$$= \underset{\tilde{a} \in \mathcal{A}}{\operatorname{minim}}(a, z_1) \leq (\tilde{a}, z_2) \cdot \left(\left(-\sum_{t=1}^{T,T} (\tilde{a}(\tilde{z}_t)z_t)\right)\right)$$

for all  $\tilde{a} \in A$ .

**Induction Step:**  $T-1 \rightarrow T$ . Assume that for any  $\tilde{a} \in A$  it holds that

$$\sum_{t=1}^{T-1} (a_{t+1}, z_t) \leq \sum_{t=1}^{T-1} (\tilde{a}, z_t).$$

Then, the following holds as well (adding  $(a_{T+1}, z_T)$  on both sides)

$$\sum\nolimits_{t=1}^{T}\left(a_{t+1},z_{t}\right)\leq\left(a_{T+1},z_{T}\right)+\sum\nolimits_{t=1}^{T-1}\left(\tilde{a},z_{t}\right),\quad\forall\tilde{a}\in\mathcal{A}.$$



Reminder (1): 
$$t_{t-1} a_{t-1} z_{t-1} z_{t-1$$

 $= \min_{a \in A} L(a, z_1) \le L(\tilde{a}, z_1) \quad \left( = \sum_{t=1}^{T} L(\tilde{a}, z_t) \right)$ 

for all 
$$\tilde{a} \in \mathcal{A}$$
.

**Induction Step:**  $T-1 \rightarrow T$ . Assume that for any  $\tilde{a} \in \mathcal{A}$  it holds that

$$\sum\nolimits_{t = 1}^{T - 1} {L({a_{t + 1}},{z_t})} \le \sum\nolimits_{t = 1}^{T - 1} {L(\tilde a,{z_t})}.$$

Then, the following holds as well (adding  $L(a_{T+1}, z_T)$  on both sides)

$$\sum\nolimits_{t=1}^{T} L(a_{t+1},z_t) \leq L(a_{T+1},z_T) + \sum\nolimits_{t=1}^{T-1} L(\tilde{a},z_t), \quad \forall \tilde{a} \in \mathcal{A}.$$

**Reminder!(1):** 
$$\sum_{t=1}^{T} ((a_{t+1}, z_t)) \le l(a_{T+1}, z_T) + \sum_{t=1}^{T-1!} (\tilde{a}_t z_t)_t.$$

**RiReminder2(2):** 
$$a_t^T a_t^{TTL} \in \operatorname{argmin}_{a \in \mathcal{A}} \sum_{s=1}^{t-1} (a_t z_s) z_s).$$

Using (1) with  $\tilde{a} = a_{T+1}$  yields

$$\sum_{t=1}^{T} (a_{t+1}, z_t) \leq \sum_{t=1}^{T} (a_{T+1}, z_t) = \sum_{t=1}^{T} \left( \arg \min_{a \in \mathcal{A}} \sum_{t=1}^{T} (a, z_t), z_t \right)$$

$$= \min_{a \in \mathcal{A}} \sum_{t=1}^{T} (a, z_t) \leq \sum_{t=1}^{T} (\tilde{a}, z_t)$$

for all  $\tilde{a} \in A$ .



- One popular instantiation of the online learning problem is the problem of online equadratic optimization (OQO).  $(a_{x,y}, z_y) < f(a_{x,y}, z_y) + \sum_{j=1}^{j-1} f(\tilde{a}_{x,y}, z_y)$
- **Regularization** (OQO).  $(a_{t+1}, z_t) \le L(a_{T+1}, z_T) + \sum_{t=1}^{T-1} L(\bar{a}, z_t)$ .

   In its most general form, the loss function is thereby defined as

Reminder (2): 
$$a_{t}^{\text{FTL}} \in \arg z_{t} \text{ in } \frac{1}{2} ||\underline{\underline{a}_{t}} \text{ In } \underline{\underline{a}_{t}}||\underline{\underline{a}_{t}} \text{ In } \underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}}||\underline{\underline{a}_{t}$$

Using**where**/i4h, Z ∈ ℝ<sup>d</sup>+1 yields

$$\sum_{t=1}^{T} L(a_{t+1}, z_t) \leq \sum_{t=1}^{T} L(a_{T+1}, z_t) = \sum_{t=1}^{T} L(\arg\min_{a \in \mathcal{A}} \sum_{t=1}^{T} L(a, z_t), z_t)$$

$$= \min_{a \in \mathcal{A}} \sum_{t=1}^{T} L(a, z_t) \leq \sum_{t=1}^{T} L(\tilde{a}, z_t)$$

for all  $\tilde{a} \in A$ .



- One popular instantiation of the online learning problem is the problem of online quadratic optimization (OQO).
- In its most general form, the loss function is thereby defined as

$$L(a_1, z_1) = \frac{1}{2!} ||a_1 - z_1||_{2!}^{2!},$$

where  $A, Z \subset \mathbb{R}^d$ .

• **Proposition:** Using FTL on any online quadratic optimization problem with  $\mathcal{A} = \mathbb{R}^d$  and  $V = \sup_{z \in \mathcal{Z}} \|z\|_2$ , leads to a regret of

$$R_T^{\text{FTL}} \leq 4V^2 (\log(T) + 1).$$



- One popular instantiation of the online learning problem is the problem of online quadratic optimization (OQO).
- In its most general form, the loss function is thereby defined as

$$L(a_1, z_1) = \frac{1}{2} ||a_1 - z_1||_{2}^{2},$$

where  $A, Z \subset \mathbb{R}^d$ .

• **Proposition:** Using FTL on any online quadratic optimization problem with  $\mathcal{A} = \mathbb{R}^d$  and  $V = \sup_{z \in \mathcal{Z}} ||z||_2$ , leads to a regret of

$$R_T^{\text{FTL}} \leq 4V^2 (\log(T) + 1).$$

- This result is satisfactory for three reasons:
  - The regret is definitely sublinear, that is, R<sub>T</sub><sup>FTL</sup> = o(T).
  - We just have a mild constraint on the online quadratic optimization problem, namely that  $||z||_2 \le V$  holds for any possible environmental data instance  $z \in \mathcal{Z}$ .
  - The action  $a_t^{\text{FTL}}$  is simply the empirical average of the environmental data seen so far:  $a_t^{\text{FTL}} = \frac{1}{t-1} \sum_{s=1}^{t-1} z_s$ .



- One popular instantiation of the online learning problem is the problem of online quadratic optimization (OQO).
- In its most general form, the loss function is thereby defined as

$$L(a_t, z_t) = \frac{1}{2} ||a_t - z_t||_2^2,$$

where  $A, Z \subset \mathbb{R}^d$ .

• Proposition: Using FTL on any online quadratic optimization problem with  $\mathcal{A} = \mathbb{R}^d$  and  $V = \sup_{z \in \mathcal{Z}} \|z\|_2$ , leads to a regret of

$$R_T^{\text{FTL}} \le 4V^2 (\log(T) + 1).$$



- The regret is definitely sublinear, that is, R<sub>T</sub><sup>FTL</sup> = o(T).
- We just have a mild constraint on the online quadratic optimization problem, namely that ||z||<sub>2</sub> ≤ V holds for any possible environmental data instance z ∈ Z.
- The action  $a_t^{\text{FTL}}$  is simply the empirical average of the environmental data seen so far:  $a_t^{\text{FTL}} = \frac{1}{t-1} \sum_{s=1}^{t-1} z_s$ .

