FTL FOR OQO PROBLEMS
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® In its most general form, the loss function is thereby defined as X @)

Follow the Ieader(alf_g)rzczblg(_)&&_roblems X X

A =R and V = sup |z||,, leads to a regret of

@ Prove that FTL works for online

adratic optimization problems

|
where A, Z R
@ Proposition: Using FTL on any online quadratic optimization problem with
AT <R oAy

;- Advanced Machine Leaming - 1/7



FTL FOR OQO PROBLEMS: ANALYSIS

@ Proof:

e In the following, we denote & -y a5, ... simply by a;, az, . ..
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@ Proof:

o In the following, we denote &', a5'", . .. simply by a;, az, . ..

Reminder (Useful Lemma):

(35“1{)*21

t=1

FTL -

(a1}5. 22)

t=1
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@ Proof:

o In the following, we denote &', a5'", . .. simply by a;, az, . .. x ®)

Reminder/(Useful kemma): X X
) W CLP B S P =i

@ Using this lemma, we just have to show that

T
> (& 1) — (@41, 22)) < 4L2 - (log(T) +1). (1)

t=1
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@ Proof:

o In the following, we denote &', a5'", . .. simply by a;, az, . ..

Reminder/(Useful temma):
A2y (@™ 2) - (&)

@ Using this lemma, we just have to show that

T
D (@ z2) — (4es:20) <402 (logT) 1)) (1)

121

o So, we will prove (1). For this purpose, we compute the
explicit form of the actions of FTL for this type of online
learning problem.
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»oClaim: It holds that & = 5 - 3°0_} . if (a,2) = L ||la— 2|[5.
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e Claim: It holds that & = 5 - Y0 . if (802} 1=

e Recall that

t—1 t—1

1 2
5;8“2‘.2.

1 .
FTL ; ; 2
a; argmin E (a,zs) arg min E > a—zl,.

acA T acA T
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2
az—2Z¢

e Claim: It holds that & = 5 - Y0 . if (802} 1= Ha:

o Recall that

11
23
—1 r—1 1
& e argiminz (8222) = argimin ZE tla— z3 5 .
acA T acA T
@ So. we have to find the minimizer of the function

fla):==>

1

N
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o Claim: It holds that & = 5
o Recall that

t—1 . 2
o1 Zs, if (822} = 1}|az— 2z} .

-1

a'- argman(a zs)~argmmz—»a z3| 2

s=1

@ So. we have to find the minimizer of the function

f(a): Z ||a—zs||§=Z%(a—zs)T(a—zs).

o Compute Vf(a) = Y_a—z = (t—1)a— Y_i_} z., which

we set to zero and solve with respect to a to obtain the claim.

{fis corvex, s0 that s leads indeod %0 aminimizer)

]
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e Hencejiapisthe-empirical average ofizy.a..z), 2, 14 and we can
pravide thefollowing incremental update formula for its
computation

} 11
_ 1 _ 1
3(+1~7'E Zs = 7 Zr*E Zs
s=1 s=1

=Hz+(t-Va)=31z+(1-1 a.

Advanced Machine Leaming -~ 4/7

O0X
X LO
X X



FTL FOR OQO PROBLEMS: ANALYSIS

@ Hence, a, is the empirical average of z;, ..., z,_4, and we can
provide the following incremental update formula for its
computation

t t—1
1 1
s=1 s=1

'}(Zp 4 (t — 1)3() = '}Zp 4 (1 — ‘}) a.

e From the last display we derive that

a1 — 24y = (1 - l{) -day + %Z( — Zy = (1 - 17) '(8( - Z().
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@ Hence, a, is the empirical average of z;, ..., z,_4, and we can
provide the following incremental update formula for its
computation

t

t—1
1
a,+1— T‘ZZS (Z,-+—Zzs)
s=1 s=1

‘}(Zp 4 (f - 1)81) = ‘:'Zp 4 (1 — !l') a.

—~

e From the last display we derive that

a,+1—z,=(1—1,)-a,+}z,—z,=(1—‘7)-(a,—z,).

@ Claim:

(anz1) — (a1.2) < 1 lla — 2z . (2)
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Reminder: &g inor 2o =0 (1) opph e @rmize)-

» Indeed, this can be seen as follows

(81.21)' (81~1.21) 7%”8; ZIH: %Ha"‘ ZyHi x x

=1 (Wl - 21 - ar: - z52)

= (lla -2 T/ - (@~ 2)|f).
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Reminder: a2z =(1-1) (a - 2z).

@ Indeed, this can be seen as follows

Ham r ZrH:

nN| -

(ar.zi) — (@an.zd) =31lan— z.ﬂj -
=1 (laer 243 {aan — 243)
=1 (laer 24| (13} (a2} )

@ And from this,
(a.2) — (a1, 2) = 1 (llar— 2l — (1 1)* - ||a - z(2)

=1(1- (- 4)7) lla - 2

= (7)) lla—zl;
1
!

llar = 21|
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__L
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Reminder: (a;,z)— (ar-1.2) < +-

ar— 2z 5 (2)

@ Since by assumption L = sup ||z||, and &, is the empirical average of

Zy,...,Z;y,we havethat ||a]|, < L.
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Reminder:

(a1, 2¢) — (B1.26) = '7 - 1@ ~z'!§- (2)

@ Since by assumption L = sup ||z||, and a, is the empirical average of

2y,....21, we havethat ||a||, < L
@ Now the triangle inequality states that for any two vectors x. y € 7 it hokds

that

so that

|

1%+ yll, < lIx[l, + Iyl

z||, < llall, + ||z, < 2L

(3)

]
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Reminder: (a,z;) — (&1.2¢) = +- & —zdl: 2)

@ Since by assumption L = sup ||z||, and a, is the empirical average of

2y,....21, we havethat ||a||, < L
@ Now the triangle inequality states that for any two vectors x, y € ¥ it hokds
that
llx +yll, < [Ix1l, + [Iyll, »
so that
llar = zl[, < [|all, + [|z]], < 2L (3)

@ Summing over all { in (2) and using (3) we arrive at

T T
! !

Z((ahzl) (avvrzv))iZ(‘,l'Hav sz::) LZ%(ZL)Z

-
!

:4szz;‘.

r=1

o
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f f
Reminder: Z (Gar, 2) 2 Cars <Ry & 412¢ Z -

| |
o
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O 0X

T T
Reminder: Z ((a,,z,) - (3(+1. Zp)) = 4[.2 . 17
1251

=1

P

T
o Now, it holds that 3 + < log(T) + 1, so that we obtain
=1

T

X X

T
> ((anz) — (as.2)) 4L2- Y § < 4L (log(T) + 1),

=1

which is what we wanted to prove.

O

o
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Reminder: X(L(a,.,z,-) L(an1,2)) < 412 Z_

¢ Now, it holds that \ + < log(T) + 1, so that we obtain
_ T
l > (Lan z) - La 412 . Z ~ 412 - (log(T) + 1),
. =1
| which is what we wanted to prove. O
. danced M

X X



