FTL FOR OQO PROBLEMS

- One popular instantiation of the online learning problem is the problem of online quadratic optimization (OQO).
 - In its most general form, the loss function is thereby defined as

Follow the leader
$$for_{(a_t, z_t)} = \frac{Q}{2} \frac{QQ}{|a_t|^2} \frac{Q}{z_t|_2}$$
 roblems

where $A, Z \subset \mathbb{R}^d$.

Proposition: Using FTL on any online quadratic optimization problem with

$$A = \mathbb{R}^d$$
 and $V = \sup_{z \in \mathcal{Z}} ||z||_2$, leads to a regret of

 Prove that FTL works for online quadratic optimization problems

- Proof: optimization of the online learning problem is the problem of online quadratic optimization (OQO).
- In the following two denote $a_{\rm lis}^{\rm FTL}$ and $a_{\rm 2eby}^{\rm FTL}$ definitionally by a_1, a_2, \ldots

$$L(a_t, z_t) = \frac{1}{2} ||a_t - z_t||_2^2,$$

where $A, Z \subset \mathbb{R}^d$.

• **Proposition:** Using FTL on any online quadratic optimization problem with $\mathcal{A} = \mathbb{R}^d$ and $V = \sup_{z \in \mathcal{Z}} \|z\|_2$, leads to a regret of

$$R_T^{\text{FTL}} \le 4V^2 (\log(T) + 1).$$

Proof:

In the following, we denote a₁^{FTL}, a₂^{FTL}, ... simply by a₁, a₂, ...

Reminder (Useful Lemma):

$$R_T^{\text{FTL}} \leq \sum_{t=1}^T \left(a_t^{\text{FTL}}, z_t\right) - \sum_{t=1}^T \left(a_{t+1}^{\text{FTL}}, z_t\right)$$

Proof:

In the following, we denote a₁^{FTL}, a₂^{FTL}, . . . simply by a₁, a₂, . . .

Reminder (Useful Lemma):

$$R_T^{\text{FTL}} = \sum_{t=1}^{T} \left(a_t^{\text{FTL}}, z_t \right) - \sum_{t=1}^{T} \left(a_{t+1}^{\text{FTLL}} z_t \right)$$

Using this lemma, we just have to show that

$$\sum_{t=1}^{T} ((a_t, z_t) - (a_{t+1}, z_t)) \le 4L^2 \cdot (\log(T) + 1).$$
 (1)

Proof:

In the following, we denote a₁^{FTL}, a₂^{FTL}, ... simply by a₁, a₂, ...

Reminder (Useful Lemma):

$$R_T^{\text{FTL}} = \sum_{t=1}^{T} \left(a_t^{\text{FTL}}, z_t \right) - \sum_{t=1}^{T} \left(a_{t+1}^{\text{FTL}}, z_t \right)$$

Using this lemma, we just have to show that

$$\sum_{t=\pm 1}^{TT} ((a_t, z_t) - (a_{t+1}, z_t)) \leq 4L^{\frac{2}{2}} (\log(T) + 1).$$
 (1)

 So, we will prove (1). For this purpose, we compute the explicit form of the actions of FTL for this type of online learning problem.

- ProoClaim: It holds that $a_t = \frac{1}{t-1} \cdot \sum_{s=1}^{t-1} z_s$, if $(a, z) = \frac{1}{2} ||a-z||_2^2$.
 - In the following, we denote $a_1^{\text{FTL}}, a_2^{\text{FTL}}, \dots$ simply by a_1, a_2, \dots

Reminder (Useful Lemma):

$$R_T^{\text{FTL}} \leq \sum_{t=1}^T L(a_t^{\text{FTL}}, z_t) - \sum_{t=1}^T L(a_{t+1}^{\text{FTL}}, z_t)$$

Using this lemma, we just have to show that

$$\sum_{t=1}^{T} \left(L(a_t, z_t) - L(a_{t+1}, z_t) \right) \le 4L^2 \cdot \left(\log(T) + 1 \right). \quad (1)$$

 So, we will prove (1). For this purpose, we compute the explicit form of the actions of FTL for this type of online learning problem.

- Claim: It holds that $a_t = \frac{1}{t-1} \cdot \sum_{s=1}^{t-1} z_s$, if $(a_s z) = \frac{1}{2} ||a_s z||_{2}^{2}$.
 - Recall that

$$a_t^{\text{FTL}} = \arg\min_{a \in \mathcal{A}} \sum_{s=1}^{t-1} (a, z_s) = \arg\min_{a \in \mathcal{A}} \sum_{s=1}^{t-1} \frac{1}{2} ||a - z_s||_2^2.$$

- Claim: It holds that $a_t = \frac{1}{t-1} \cdot \sum_{s=1}^{t-1} z_s$, if $(a,z) = \frac{1}{2} ||a z||_{2}^{2/2}$.
 - Recall that

$$a_{t}^{\text{FTL}} a_{t}^{\text{FTL}} \arg \min_{a \in \mathcal{A}} \sum_{s=1}^{t-1} \left(a_{s} z_{s} \right) = \arg \min_{a \in \mathcal{A}} \sum_{s=1}^{t-1} \frac{1}{2} \frac{1}{z_{s-1}} \frac{1}{2} |z_{s}||_{2}^{2} |z_{s}||_{2}^{2}.$$

$$f(a) := \sum_{s=1}^{t-1} \frac{1}{2} \|a - z_s\|_2^2 = \sum_{s=1}^{t-1} \frac{1}{2} (a - z_s)^{\top} (a - z_s).$$

- Claim: It holds that $a_t = \frac{1}{t-1} \cdot \sum_{s=1}^{t-1} z_s$, if $(a_t z_t) = \frac{1}{2} ||a_t z||_{22}^{22}$
 - Recall that

$$a_{t}^{\text{FTL}} a_{t}^{\text{FTL}} \arg \min_{a \in \mathcal{A}} \sum_{s=1}^{t-1} \left(\dot{a}_{s} z_{s} \right) = \arg \min_{a \in \mathcal{A}} \sum_{s=1}^{t-1} \frac{1}{2} \frac{1}{|z_{s}|^{2}} \frac{1}{2} |z_{s}||_{2}^{2} |z_{s}||_{2}^{2}.$$

. So, we have to find the minimizer of the function

$$f(a) := \sum_{s=1}^{t-1} \frac{1}{2} \|a - z_s\|_2^2 = \sum_{s=1}^{t-1} \frac{1}{2} (a - z_s)^{\top} (a - z_s).$$

• Compute $\nabla f(a) = \sum_{s=1}^{t-1} a - z_s = (t-1)a - \sum_{s=1}^{t-1} z_s$, which we set to zero and solve with respect to a to obtain the claim.

(f is convex, so that this leads indeed to a minimizer.)

 Hence, a cis the empirical average of z₁(a, z), z₁ = 1 and we can provide the following incremental update formula for its computation

$$a_{t}^{\text{FTL}} = \underset{s=1}{\operatorname{arg\,min}} a_{e,\mathcal{A}} \sum_{t=1}^{t-1} L(a, z_{t+})_{t} = \underset{s=1}{\operatorname{arg\,min}} a_{e,\mathcal{A}} \sum_{s=1}^{t-1} \frac{1}{2} ||a - z_{s}||_{2}^{2}.$$

$$a_{t+1} = \frac{1}{t} \cdot \sum_{s=1} z_{s} = \frac{1}{t} \left(z_{t} + \sum_{s=1} z_{s} \right)$$
• So, we have to find the minimizer of the function
$$= \frac{1}{t} (z_{t} + (t-1)a_{t}) = \frac{1}{t} z_{t} + (1-\frac{1}{t}) a_{t}.$$

$$f(a) := \sum_{s=1}^{t-1} \frac{1}{2} \|a - z_s\|_2^2 = \sum_{s=1}^{t-1} \frac{1}{2} (a - z_s)^{\top} (a - z_s).$$

• Compute $\nabla f(a) = \sum_{s=1}^{t-1} a - z_s = (t-1)a - \sum_{s=1}^{t-1} z_s$, which we set to zero and solve with respect to a to obtain the claim.

 Hence, a_t is the empirical average of z₁,..., z_{t-1} and we can provide the following incremental update formula for its computation

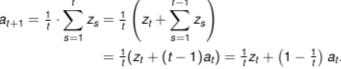
$$a_{t+1} = \frac{1}{t} \cdot \sum_{s=1}^{t} z_s = \frac{1}{t} \left(z_t + \sum_{s=1}^{t-1} z_s \right)$$
$$= \frac{1}{t} (z_t + (t-1)a_t) = \frac{1}{t} z_t + (1 - \frac{1}{t}) a_t.$$

· From the last display we derive that

$$a_{l+1} - z_l = (1 - \frac{1}{l}) \cdot a_l + \frac{1}{l} z_l - z_l = (1 - \frac{1}{l}) \cdot (a_l - z_l).$$

 Hence, a_t is the empirical average of z₁,..., z_{t-1} and we can provide the following incremental update formula for its computation

$$a_{t+1} = \frac{1}{t} \cdot \sum_{s=1}^{t} z_s = \frac{1}{t} \left(z_t + \sum_{s=1}^{t-1} z_s \right)$$
$$= \frac{1}{t} (z_t + (t-1)a_t) = \frac{1}{t} z_t + (1 - \frac{1}{t}) a_t.$$



$$a_{l+1} - z_l = (1 - \frac{1}{l}) \cdot a_l + \frac{1}{l} z_l - z_l = (1 - \frac{1}{l}) \cdot (a_l - z_l).$$

Claim:

$$(a_l, z_l) - (a_{l+1}, z_l) \le \frac{1}{l} \cdot ||a_l - z_l||_2^2.$$
 (2)

- Hence, a_t is the empirical average of z_1, \ldots, z_{t-1} and we can pro **Reminder** low a_t incr z_t nen(a) up tate z_t for its
- Indeed, this can be seen as follows

$$\begin{aligned} a_{l+1}(a_{l}, \underline{z}_{l}) &= (\underline{a}_{l+1}, \underline{z}_{l}) = \frac{1}{l} \| (a_{l-1} - \underline{z}_{l}) \|_{2}^{2} - \underline{z}_{l} \| \| a_{l+1} - z_{l} \|_{2}^{2} \\ &= \frac{1}{2} \left(\| a_{l} - \underline{z}_{l} \|_{2}^{2} - ||a_{l+1} - z_{l}||_{2}^{2} \right) \\ &= \frac{1}{2} \left(z_{l} + (t-1) a_{l} \right) = \frac{1}{2} z_{l} + (1 - \frac{1}{2}) \\ &= \frac{1}{2} \left(\| a_{l} - z_{l} \|_{2}^{2} - \| (1 - \frac{1}{l}) \cdot (a_{l} - z_{l}) \|_{2}^{2} \right). \end{aligned}$$

· From the last display we derive that

$$a_{l+1} - z_l = (1 - \frac{1}{l}) \cdot a_l + \frac{1}{l} z_l - z_l = (1 - \frac{1}{l}) \cdot (a_l - z_l).$$

· Claim:

$$L(a_t, z_t) - L(a_{t+1}, z_t) \le \frac{1}{t} \cdot ||a_t - z_t||_2^2.$$
 (2)

Reminder:
$$a_{t+1} - z_t = \left(1 - \frac{1}{t}\right) \cdot \left(a_t - z_t\right)$$
.

Indeed, this can be seen as follows

· And from this,

$$(a_{t}, z_{t}) - (a_{t+1}, z_{t}) = \frac{1}{2} \left(||a_{t} - z_{t}||_{2}^{2} - \left(1 - \frac{1}{t}\right)^{2} \cdot ||a_{t} - z_{t}||_{2}^{2} \right)$$

$$= \frac{1}{2} \left(1 - \left(1 - \frac{1}{t}\right)^{2} \right) \cdot ||a_{t} - z_{t}||_{2}^{2}$$

$$= \left(\frac{1}{t} - \frac{1}{2t^{2}} \right) \cdot ||a_{t} - z_{t}||_{2}^{2}$$

$$\leq \frac{1}{t} \cdot ||a_{t} - z_{t}||_{2}^{2}.$$

Reminder:
$$a_{t+1} - z_t = (1 - \frac{1}{t}) \cdot (a_t - z_t).$$

· Indeed, this can be seen as follows

$$L(a_{t}, z_{t}) - L(a_{t+1}, z_{t}) = \frac{1}{2} ||a_{t} - z_{t}||_{2}^{2} - \frac{1}{2} ||a_{t+1} - z_{t}||_{2}^{2}$$

$$= \frac{1}{2} (||a_{t} - z_{t}||_{2}^{2} - ||a_{t+1} - z_{t}||_{2}^{2})$$

$$= \frac{1}{2} (||a_{t} - z_{t}||_{2}^{2} - ||(1 - \frac{1}{t}) \cdot (a_{t} - z_{t})||_{2}^{2}).$$

· And from this,

$$L(a_{t}, z_{t}) - L(a_{t+1}, z_{t}) = \frac{1}{2} \left(\|a_{t} - z_{t}\|_{2}^{2} - \left(1 - \frac{1}{t}\right)^{2} \cdot \|a_{t} - z_{t}\|_{2}^{2} \right)$$

$$= \frac{1}{2} \left(1 - \left(1 - \frac{1}{t}\right)^{2} \right) \cdot \|a_{t} - z_{t}\|_{2}^{2}$$

$$= \left(\frac{1}{t} - \frac{1}{2t^{2}} \right) \cdot ||a_{t} - z_{t}||_{2}^{2}$$

$$\leq \frac{1}{t} \cdot ||a_{t} - z_{t}||_{2}^{2}.$$

Reminder:
$$(a_t, z_t) - (a_{t+1}, z_t) \le \frac{1}{t} \cdot ||a_t - z_t||_2^2$$
. (2)

Since by assumption L = sup_{z∈Z} ||z||₂ and a_t is the empirical average of z₁,..., z_{t-1}, we have that ||a_t||₂ ≤ L.

FReminder:
$$L(a_t, z_t) - (a_{t+1}, z_t) \ge \frac{1}{t} ||a_t - z_t||_{2}^{2}$$
. (2)

- Since by assumption L = sup_{z∈Z} ||z||₂ and a_t is the empirical average of z₁,..., z_{t-1}, we have that ||a_t||₂ ≤ L.
- Now the triangle inequality states that for any two vectors $x,y\in\mathbb{R}^d$ it holds that

$$||x + y||_2 \le ||x||_2 + ||y||_2$$

so that

$$||a_t - z_t||_2 \le ||a_t||_2 + ||z_t||_2 \le 2L.$$
 (3)

FReminder:
$$L(a_t, z_t) - (a_{t+1}, z_t) \leq \frac{1}{t} ||a_{t+1} - z_t||_{2}^{2}$$
. (2)

- Since by assumption L = sup_{z∈Z} ||z||₂ and a_t is the empirical average of z₁,..., z_{t-1}, we have that ||a_t||₂ ≤ L.
- ullet Now the triangle inequality states that for any two vectors $x,y\in\mathbb{R}^d$ it holds that

$$||x + y||_2 \le ||x||_2 + ||y||_2$$

so that

$$||a_t - z_t||_2 \le ||a_t||_2 + ||z_t||_2 \le 2L.$$
 (3)

Summing over all t in (2) and using (3) we arrive at

$$\begin{split} \sum_{t=1}^{T} \left(\left(a_{t}, z_{t} \right) - \left(a_{t+1}, z_{t} \right) \right) &\leq \sum_{t=1}^{T} \left(\frac{1}{t} \cdot \left\| a_{t} - z_{t} \right\|_{2}^{2} \right) \leq \sum_{t=1}^{T} \frac{1}{t} \cdot \left(2L \right)^{2} \\ &= 4L^{2} \cdot \sum_{t=1}^{T} \frac{1}{t}. \end{split}$$

Reminder:
$$L(a_t, z_t) - L(a_{t+1}, z_t) \le \frac{1}{t} \cdot ||a_t - z_t||_2^2$$
. (2)

- Since branching: $L = \sum_{t=1}^{L} ((a_t^1, a_t)) \stackrel{\text{a.i.}}{=} (a_{t+1}^1, a_t) \stackrel{\text{a.i.}}{=$
- Now the triangle inequality states that for any two vectors x, y ∈ ℝⁿ it holds that

$$||x + y||_2 \le ||x||_2 + ||y||_2$$

so that

$$||a_t - z_t||_2 \le ||a_t||_2 + ||z_t||_2 \le 2L.$$
 (3)

Summing over all t in (2) and using (3) we arrive at

$$\begin{split} \sum_{t=1}^{T} \left(L(a_t, z_t) - L(a_{t+1}, z_t) \right) &\leq \sum_{t=1}^{T} \left(\frac{1}{t} \cdot ||a_t - z_t||_2^2 \right) \leq \sum_{t=1}^{T} \frac{1}{t} \cdot (2L)^2 \\ &= 4L^2 \cdot \sum_{t=1}^{T} \frac{1}{t}. \end{split}$$

FReminder:
$$\sum_{t=t+1}^{TT} ((a_t, z_t) - (a_{t+1}, z_t)) \leq 4L^{2/2} \cdot \sum_{t=1}^{TT} \frac{1}{t}$$

• Now, it holds that $\sum_{t=1}^{r} \frac{1}{t} \leq \log(T) + 1$, so that we obtain

$$\sum_{t=1}^{T} ((a_t, z_t) - (a_{t+1}, z_t)) \leq 4L^2 \cdot \sum_{t=1}^{T} \frac{1}{t} \leq 4L^2 \cdot (\log(T) + 1),$$

which is what we wanted to prove.

Reminder:
$$\sum_{t=1}^{T} (L(a_t, z_t) - L(a_{t+1}, z_t)) \leq 4L^2 \cdot \sum_{t=1}^{T} \frac{1}{t}$$

• Now, it holds that $\sum_{t=0}^{T} \frac{1}{t} \leq \log(T) + 1$, so that we obtain

$$\sum_{t=1}^{T} \left(L(a_t, z_t) - L(a_{t+1}, z_t) \right) \leq 4L^2 \cdot \sum_{t=1}^{T} \frac{1}{t} \leq 4L^2 \cdot \left(\log(T) + 1 \right),$$

which is what we wanted to prove.

