Another popular instantiation of the online learning problem is the online linear optimization problem, which is characterized by a linear loss function $(a, z) = a^{T}z$.

× 0 0 × × ×

Follow the leader on OLO problems

Learning goals

- Getting to know online linear optimzation (OLO) problems
- See that FTL might fail for these problems
- Understanding the root cause for FTL's flaw

 Another popular instantiation of the online learning problem is the online linear optimization problem, which is characterized by a linear loss function (az) = azz.

• Let
$$\mathcal{A} = [-1, 1]$$
 and suppose that $z_t = \begin{cases} -\frac{1}{2}, & t = 1, \\ 1, & t \text{ is even,} \\ -1, & t \text{ is odd.} \end{cases}$

 Another popular instantiation of the online learning problem is the online linear optimization problem, which is characterized by a linear loss function (azz) = azz.

• Let
$$\mathcal{A} = [-1, 1]$$
 and suppose that $z_t = \begin{cases} -\frac{1}{2}, & t = 1, \\ 1, & t \text{ is even,} \\ -1, & t \text{ is odd.} \end{cases}$

 Thus, FTL's cumulative regret is at least T - 1, which is linearly growing in T.

 Indeed, note that
Another popular instantiation of the online learning problem is the online linear optimization problem, which is characterized by a linear loss function $L(a_{a \in \mathcal{A}}^{TL}) \equiv \underset{a \in \mathcal{A}}{\operatorname{arg\,min}} \sum_{s=1}^{n} (a, z_s) = \underset{a \in [-1,1]}{\operatorname{arg\,min}} \sum_{s=1}^{n} z_s$

• Let
$$\mathcal{A} = [-1,1]$$
 and suppose that $\overline{Z}_t \begin{cases} -1, -\frac{1}{2}, & \text{if } t \sum_{s=1}^t z_s > 0, \\ 1, & \text{if } t \sum_{s=0}^t \sqrt{s} t < 0, \\ -1, & \text{if } t \sum_{s=0}^t \sqrt{s} t < 0, \\ -1, & \text{if } t \sum_{s=0}^t \sqrt{s} \sqrt{s} < 0. \end{cases}$

- No matter how we choose the first action a^{FTL}, it will hold that FTL has a cumulative loss greater than (or equal) T - 3/2, while the best action in hindsight has a cumulative loss of -1/2.
- Thus, FTL's cumulative regret is at least T − 1, which is linearly growing. in T.

$$\begin{split} a_{1}^{\text{FTL}} &= \underset{a \in \mathcal{A}}{\text{arg min}} \sum_{s=1}^{f} (a,(z_{s})z_{s}) \underset{a \in [-1,1]}{\text{arg min at}} \sum_{s=1}^{f} z_{s,1]} \underset{s=1}{a} \sum_{z=1}^{f} z_{s} \\ &= \begin{cases} -1,1, & \text{if } \sum_{s=1}^{f-1} z_{s} \geq 0; 0, \\ 1, & \text{if } \sum_{s=1}^{f-1} z_{s} \leq 0; 0, \\ \text{arbitraryary if } \sum_{s=1}^{f-1} z_{s} \geq 0; 0. \end{cases} \end{split}$$

t	a ^{FTL}	Z_{f}	(a_t^{FTL}, z_t)	$\sum_{s=1}^{t} (a_s^{FTL}, z_s)$	$\sum_{s=1}^{t} z_s$
1	1	-1/2	-1/2	-1/2	-1/2

t	a ^{FTL}	Z_{f}	(a_f^{FTL}, z_f)	$\sum_{s=1}^{h} (a_s^{TI}, z_s)_s$	$\sum_{s=1}^{l} Z_s Z_s$
1	1	-1/2	-1/2	-1/2/2	-1/2/2
2	1	1	1	1 -1/2	1/2

t	a_t^{FTL}	Z_{\uparrow}	$(a_{\Gamma}^{FTL}, z_{\Gamma})$	$\sum_{s=1}^{n} (a_s^{TL}, z_s) s$	$\sum_{s=1}^{\infty} Z_s Z_s$
1	1	-1/2	-1/2	-1/2/2	-1/2/2
2	1	1	11	1 1-1/2/2	1/21/2
3	-1	-1	1	2 -1/2	-1/2

t	a ^{FTL}	z_t	$(a_{r_1}^{\text{FTL}}, z_r))$	$\sum_{s=1}^{n} (a_s^{FIL} a_s, z_s) r_s$	$\sum_{s=1}^{\infty} Z_s Z_s$
1	1	-1/2	-1/2	-1/2/2	-1/2/2
2	1	1	11	1 1-1/2/2	1/21/2
3	-1	-1	11	2 2-1/2/2	-1/2/2
:	:	:	:	• • •	:
Т	(−1) ⁷	(−1) ⁷	1	T - 1 - 1/2	$(-1/2)^{T}$

Indeed, note that

$$\begin{split} \mathbf{a}_{1}^{\text{FTL}} \underset{a \in \mathcal{A}}{\text{arg min}} \sum_{s=1}^{t} (\mathbf{a}_{1}(z_{s})z) & \underset{a \in [-1,1]}{\text{arg min at}} \sum_{s=1}^{t} z_{s,1]} \text{ a} \sum_{s=1}^{t} z_{s} \\ &= \begin{cases} -1,1, & \text{if } \sum_{s=1}^{t-1} z_{s} \geq 0; \ 0, \\ 1, & \text{if } \sum_{s=1}^{t-1} z_{s} \leq 0; \ 0, \\ \text{arbitratyary if } \sum_{s=1}^{t-1} z_{s} \geq 0; \ 0. \end{cases} \end{split}$$

t	a ^{FTL}	z_{t}	$(a_{r_1}^{\text{FIL}}, z_r))$	$\sum_{s=1}^{N_I} (a_s^{FIL} z_s) z_s$	$\sum_{s=1}^{\infty} Z_s Z_s$
1	1	-1/2	-1/2	-1/2/2	-1/2/2
2	1	1	11	1 1-1/2/2	1/21/2
3	-1	-1	11	2 2-1/2/2	-1/2/2
:	:	:	::	::	::
Т	(-1) ⁷	(-1) ⁷	11	TT-1+1/2/2	(-(1/2) [₹]) ⁷

The best action has cumulative loss

$$\inf_{a \in \mathcal{A}} \sum_{s=1}^{T} (a, z_s) = \inf_{a \in [-1, 1]} a \underbrace{\sum_{s=1}^{T} z_s}_{=(-1/2)^{T}} = -1/2.$$

- Thus, we see: FTL can fail for online linear optimization problems, although it is well suited for online quadratic optimization problems!
- The reason is that the action selection of FTL is not stable enough (caused by the loss function), which is fine for the latter problem, but problematic for the former.

 $T \mid (-1)^T \mid (-1)^T \mid 1$ The best action has cumulative loss

$$\inf_{a \in \mathcal{A}} \sum_{s=1}^{T} L(a, z_s) = \inf_{a \in [-1, 1]} a \underbrace{\sum_{s=1}^{T} z_s}_{=(-1/2)^{T}} = -1/2.$$

T-1-1/2 $(-1/2)^T$

- Thus, we see: FTL can fail for although it is well suited for online quadratic optimization problems!
- The reason is that the action selection of FTL is not stable enough (caused by the loss function), which is fine for the latter problem, but problematic for .
- One has to note that the online linear optimization problem example above, where FTL fails, is in fact an adversarial learning setting: The environmental data is generated in such a way that the FTL learner is fooled in each time step.

