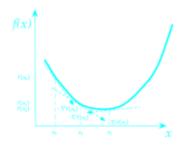
ONLINE CONVEX OPTIMIZATION

One of the most relevant instantiations of the online learning problem is the problem of *online convex optimization* (OCO), which is characterized by a loss function : $\mathcal{A} \times \mathcal{Z} \to \mathbb{R}$, which is convex w.r.t. the action, i.e.,

Onfine Servex Optimization



Learning goals

- Get to know the class of online convex optimization problems
- See the online gradient descent as a satisfactory learning algorithm for such cases
- Know its connection to the FTRL via linearization of convex functions

ONLINE CONVEX OPTIMIZATION

- One of the most relevant instantiations of the online learning problem is the problem of *online convex optimization* (OCO), which is characterized by a loss function \(\begin{align*}
 & \mathcal{A} \infty \mathcal{Z} \rightarrow \mathbb{R} \) which is convex w.r.t. (the action pi. eq., \(a \infty \mathcal{Z} \)) is convex for any \(\mathcal{Z} \infty \mathcal{Z} \).
- Note that both OLO and OQO belong to the class of online convex optimization problems:
 - Online linear optimization (OLO) with convex action spaces:
 (a, z) = a[⊤]z is a convex function in a ∈ A, provided A is convex.
 - Online quadratic optimization (OQO) with convex action spaces:
 (a, z) = ½ ||a z||²²² is a convex function in a ∈ A, provided A is convex.

- We have seen that the FTRL algorithm with the proof regularization is $\psi(a) = \frac{1}{2g} \|a\|_2^2$ achieves satisfactory results for online linear aracterized optimization (OLO) problems, that is, if $(a, z) = \frac{1}{2g} e^{-\frac{1}{2g}}$, then we have
- Note that both OLO and QQQR belong to the class of online convex optimization problems:
 - Online linear optimization (OLO) with convex action spaces:
 - Regret bounds is a so next function in a GA provided A is convex.
 By an appropriate choice of a and some (mild)
 Online quadratic aptimization (OOO) with convex action spaces:
 - of the quadratic optimization (200) with convex action spaces: assumptions on \mathcal{A} and \mathcal{Z} , we have $L(a,z) = \frac{1}{2} ||a-z||_2$ is a convex function in $a \in \mathcal{A}$, provided \mathcal{A} is convex. $\mathbf{R}_{\tau}^{\text{FTRL}} = o(T)$.

Apparently, the nice form of the loss function $L^{1\mathrm{in}}$ is responsible for the appealing properties of FTRL in this case. Indeed, since $\nabla_a L^{1\mathrm{in}}(a,z) = 2$ note that the update rule can be written as results for online linear optimization (OLO) problems, that is, if $L(a,z) = L^{1\mathrm{in}}(a,z) := a^{\top}z$, then

optimization (OLO) problems, that is, if $L(a,z) = L^{\text{lin}}(a,z) := a^{\top}z$, then we have $a_{t+1}^{\text{FTRL}} = a_t^{\text{FTRL}} - \eta z_t = a_t^{\text{FTRL}} - \eta \nabla_a L^{\text{lin}}(a_t^{\text{FTRL}}, z_t)$.

$$a_{t+1}^{\text{FTRL}} = a_t^{\text{FTRL}} - \eta z_t, \qquad t = 1, \dots, T;$$

 Regret bounds — By an appropriate choice of η and some (mild) assumptions on A and Z, we have

$$R_T^{\text{FTRL}} = o(T).$$

Apparently, the nice form of the loss function L^{lin} is responsible for the appealing properties of FTRL in this case. Indeed, since $\nabla_a L^{\text{lin}}(a,z) = z$ note that the update rule can be written as

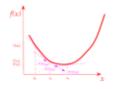
$$a_{t+1}^{\text{FTRL}} = a_t^{\text{FTRL}} - \eta z_t = a_t^{\text{FTRL}} - \eta \nabla_a \mathcal{L}^{\text{lin}}(a_t^{\text{FTRL}}, z_t).$$

Interpretation: In each time step t+1, we are following the direction with the steepest decrease of the loss (represented by $-\nabla L^{\text{lin}}(a_t^{\text{FTRL}}, z_t)$) from the current "position" a_t^{FTRL} with the step size η

Apparently, the nice form of the loss function L^{lin} is responsible for the appealing properties of FTRL in this case. Indeed, since $\nabla_a L^{\text{lin}}(a,z) = z$ note that the update rule can be written as

$$a_{t+1}^{\text{FTRL}} = a_t^{\text{FTRL}} - \eta \, z_t = a_t^{\text{FTRL}} - \eta \, \nabla_a \mathcal{L}^{\text{lin}}(a_t^{\text{FTRL}}, z_t).$$

Interpretation: In each time step t+1, we are following the direction with the steepest decrease of the loss (represented by $-\nabla \mathcal{L}^{\text{lin}}(a_t^{\text{FTRL}}, z_t)$) from the current "position" a_t^{FTRL} with the step size η

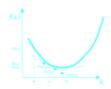


⇒ Gradient Descent.

Apparently, the nice form of the loss function ℓ^{11n} is responsible for the **Question**: How to transfer this idea of the Gradient Descent for the appealing properties of F. H. In this case, indeed since update formula to other loss functions, while still preserving the regret that the update rule can be written as bounds?

$$a_{t+1}^{\text{FTRL}} = a_t^{\text{FTRL}} - \eta \, z_t = a_t^{\text{FTRL}} - \eta \, \nabla_a L^{\text{lin}}(a_t^{\text{FTRL}}, z_t).$$

Interpretation: In each time step t+1, we are following the direction with the steepest decrease of the loss (represented by $-\nabla L^{\text{lin}}(a_t^{\text{FTRL}}, z_t)$) from the current "position" a_t^{FTRL} with the step size η



⇒ Gradient Descent.

- Question: How to transfer this idea of the Gradient Descent for the update formula to other loss functions, while still preserving the regret bounds?
- Solution (for convex losses): Recall the equivalent characterization of convexity of differentiable convex functions:

$$f: S \to \mathbb{R}$$
 is convex $\Leftrightarrow f(y) \ge f(x) + (y - x)^\top \nabla f(x)$ for any $x, y \in S$
 $\Leftrightarrow f(x) - f(y) \le (x - y)^\top \nabla f(x)$ for any $x, y \in S$.

- Question: How to transfer this idea of the Gradient Descent for the update formula to other loss functions, while still preserving the regret bounds?
- Solution (for convex losses): Recall the equivalent characterization of convexity of differentiable convex functions:

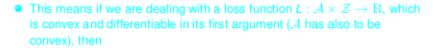
$$f: S \to \mathbb{R}$$
 is convex $\Leftrightarrow f(y) \ge f(x) + (y-x)^\top \nabla f(x)$ for any $x, y \in S$
 $\Leftrightarrow f(x) - f(y) \le (x-y)^\top \nabla f(x)$ for any $x, y \in S$.

 This means if we are dealing with a loss function : A × Z → R, which is convex and differentiable in its first argument (A has also to be convex), then

$$(a,z)-(\tilde{a},z) \leq (a-\tilde{a})^{\top} \nabla_a(a,z), \quad \forall a,\tilde{a} \in \mathcal{A}, z \in \mathcal{Z}.$$

- Reminder: (এন) to (মুন্দু) কি (মুল্ছ মুল্ছ ১৮ (মুল্ছ ১৮ মেল ১৮ মে
- Solution (for convex losses): Recall the equivalent characterization of convexity of differentiable convex functions:

$$f: S \to \mathbb{R}$$
 is convex $\Leftrightarrow f(y) \ge f(x) + (y-x)^\top \nabla f(x)$ for any $x, y \in S$
 $\Leftrightarrow f(x) - f(y) \le (x-y)^\top \nabla f(x)$ for any $x, y \in S$.



$$L(a,z) - L(\tilde{a},z) \le (a-\tilde{a})^{\top} \nabla_a L(a,z), \quad \forall a, \tilde{a} \in \mathcal{A}, z \in \mathcal{Z}.$$

- Reminder: (\hat{a},z) \rightarrow $(\tilde{a}(\tilde{z}) \preceq (\tilde{a}(\tilde{a}|\tilde{a})\tilde{a})\nabla_{a}(a/z), z) \forall a, \tilde{a} \in \mathcal{A}, z \in \mathcal{Z}; \mathcal{Z}.$
- Let z₁,..., z_T arbitrary environmental data and a₁,..., a_T be some arbitrary action sequence. Substitute ž_r := ∇_a(a_r, z_r) and note that

- Reminder: (\hat{a},z) $(\tilde{a}(\hat{z}) \preceq (\hat{a}(-\tilde{a})) \nabla_{a}(a/z), z) \forall a, \tilde{a} \in A, z \in Z$.
- Let z₁,..., z_T arbitrary environmental data and a₁,..., a_T be some arbitrary action sequence. Substitute ž_t := ∇_a(â_t; z_t) and note that t

$$\begin{split} \boldsymbol{R_T}(\boldsymbol{\tilde{a}}) &= \sum_{t=1}^T \left(\boldsymbol{a}_t, \boldsymbol{z}_t\right) - \left(\boldsymbol{\tilde{a}}, \boldsymbol{z}_t\right) \leq \sum_{t=1}^T \left(\boldsymbol{a}_t - \boldsymbol{\tilde{a}}\right)^\top \nabla_{\boldsymbol{a}} (\boldsymbol{a}_t, \boldsymbol{z}_t) \\ &= \sum_{t=1}^T \left(\boldsymbol{a}_t - \boldsymbol{\tilde{a}}\right)^\top \boldsymbol{\tilde{z}}_t = \sum_{t=1}^T \boldsymbol{a}_t^\top \boldsymbol{\tilde{z}}_t - \boldsymbol{\tilde{a}}^\top \boldsymbol{\tilde{z}}_t = \sum_{t=1}^T \boldsymbol{L}^{\text{lin}} (\boldsymbol{a}_t, \boldsymbol{\tilde{z}}_t) - \boldsymbol{L}^{\text{lin}} (\boldsymbol{\tilde{a}}, \boldsymbol{\tilde{z}}_t). \end{split}$$

- Reminder: (\hat{a},z) \rightarrow $(\tilde{a}(\tilde{z}) \preceq (a(=\tilde{a})^{\frac{1}{2}})\nabla_a(a/z), z) \forall a, \tilde{a} \in A, z \in Z \in Z$.
- Let z₁,..., z_T arbitrary environmental data and a₁,..., a_T be some arbitrary action sequence. Substitute z̃_f := ∇_a(â_f; z_f) and note that t

$$\begin{aligned} R_{T}(\tilde{\mathbf{a}}) &= \sum_{t=1}^{T} (\hat{\mathbf{a}}_{t}, \mathbf{z}_{t}) - (\tilde{\mathbf{a}}_{t}, \tilde{\mathbf{z}}_{t}) \succeq \sum_{t=1}^{T} (\hat{\mathbf{a}}_{t}, \tilde{\mathbf{a}}_{t}) \bar{\tilde{\mathbf{a}}}_{t} \bar{\tilde{\mathbf{a}}}_{t}, \bar{\mathbf{z}}_{t}), \, \mathbf{z}_{t}) \\ &= \sum_{t=1}^{T} (\mathbf{a}_{t} - \tilde{\mathbf{a}})^{\top} \, \tilde{\mathbf{z}}_{t} = \sum_{t=1}^{T} \mathbf{a}_{t}^{\top} \, \tilde{\mathbf{z}}_{t} - \tilde{\mathbf{a}}^{\top} \, \tilde{\mathbf{z}}_{t} = \sum_{t=1}^{T} L^{1 \text{in}}(\mathbf{a}_{t}, \tilde{\mathbf{z}}_{t}) - L^{1 \text{in}}(\tilde{\mathbf{a}}_{t}, \tilde{\mathbf{z}}_{t}). \end{aligned}$$

Conclusion: The regret of a learner with respect to a differentiable and convex loss function is bounded by the regret corresponding to an online linear optimization problem with environmental data $\tilde{z}_t = \nabla_a(a_t, z_t)$.

- Reminder: (\hat{a},z) $(\tilde{a}(\hat{z}) \preceq (\hat{a}(-\tilde{a})\tilde{a})\nabla_{a}(a/z), z) \forall a, \tilde{a} \in \mathcal{A}, z \in \mathcal{Z}; \mathcal{Z}.$
- Let z₁,..., z_T arbitrary environmental data and a₁,..., a_T be some arbitrary action sequence. Substitute z̃_f := ∇_a(â_f; z_f) and note that t

$$\begin{split} R_{T}(\tilde{\mathbf{a}}) &= \sum_{t=1}^{T} \left(\tilde{\mathbf{a}}_{t}, \mathbf{z}_{t} \right) - \left(\tilde{\mathbf{a}}_{t}, \tilde{\mathbf{z}}_{t} \right) \mathbf{z}_{t} \underbrace{\sum_{t=1}^{T} \left(\tilde{\mathbf{a}}_{t} \, \tilde{\mathbf{a}} \right)^{T}}_{t} \tilde{\mathbf{a}}_{t}(\mathbf{a}_{t}, \mathbf{z}_{t}), \mathbf{z}_{t} \right) \\ &= \sum_{t=1}^{T} \left(\mathbf{a}_{t} - \tilde{\mathbf{a}} \right)^{T} \, \tilde{\mathbf{z}}_{t} = \sum_{t=1}^{T} \mathbf{a}_{t}^{T} \, \tilde{\mathbf{z}}_{t} - \tilde{\mathbf{a}}^{T} \, \tilde{\mathbf{z}}_{t} = \sum_{t=1}^{T} L^{1 \text{in}} \left(\mathbf{a}_{t}, \tilde{\mathbf{z}}_{t} \right) - L^{1 \text{in}} \left(\tilde{\mathbf{a}}, \tilde{\mathbf{z}}_{t} \right). \end{split}$$

Conclusion: The regret of a learner with respect to a differentiable and convex loss function as bounded by the regret corresponding to an online linear optimization problem with environmental data $\tilde{z}_t = \nabla_a(a_t, z_t)$.

 We know: Online linear optimization problems can be tackled by means of the FTRL algorithm!

- Reminder: (\hat{a},z) \rightarrow $(\tilde{a}(\tilde{z}) \preceq (a(=\tilde{a})^{\frac{1}{2}})\nabla_a(a/z), z) \forall a, \tilde{a} \in A, z \in Z$.
- Let z₁,..., z_T arbitrary environmental data and a₁,..., a_T be some arbitrary action sequence. Substitute z̃_f := ∇_a(â_f; z_f) and note that t

$$\begin{aligned} R_{T}(\tilde{\mathbf{a}}) &= \sum_{t=1}^{T} (\hat{\mathbf{a}}_{t}, \mathbf{z}_{t}) - (\tilde{\mathbf{a}}(\tilde{\mathbf{z}}_{t}) \mathbf{z} \leq \sum_{t=1}^{T} (\hat{\mathbf{a}}_{t}(\tilde{\mathbf{a}}_{t} \tilde{\mathbf{a}}) \tilde{\mathbf{a}}) \nabla_{\mathbf{a}}(\mathbf{a}_{t}, \mathbf{z}_{t}), \mathbf{z}_{t}) \\ &= \sum_{t=1}^{T} (\mathbf{a}_{t} - \tilde{\mathbf{a}})^{\top} \tilde{\mathbf{z}}_{t} = \sum_{t=1}^{T} \mathbf{a}_{t}^{\top} \tilde{\mathbf{z}}_{t} - \tilde{\mathbf{a}}^{\top} \tilde{\mathbf{z}}_{t} = \sum_{t=1}^{T} L^{1in}(\mathbf{a}_{t}, \tilde{\mathbf{z}}_{t}) - L^{1in}(\tilde{\mathbf{a}}, \tilde{\mathbf{z}}_{t}). \end{aligned}$$

Conclusion: The regret of a learner with respect to a differentiable and convex loss function his bounded by the regret corresponding to an online linear optimization problem with environmental data $\tilde{z}_t = \nabla_a(a_t, z_t)$.

- We know: Online linear optimization problems can be tackled by means of the FTRL algorithm!
- Incorporate the substitution $\tilde{z}_t = \nabla_a(a_t, z_t)$ into the update formula of FTRL with squared L2-norm regularization.

- Reminder: $L(a, z) L(\tilde{a}, z) \le (a \tilde{a})^{\top} \nabla_a L(a, z), \quad \forall a, \tilde{a} \in \mathcal{A}, z \in \mathcal{Z}.$
- The corresponding algorithm which chooses its action according to these considerations is called the *Online Gradient Descent* (OGD) algorithm with step size η > 0. It holds in particular,

$$R_{T}(\tilde{\boldsymbol{a}}) = \sum_{t=1}^{T} \frac{L(\boldsymbol{a}_{t}, \boldsymbol{z}_{t}) - L(\tilde{\boldsymbol{a}}, \boldsymbol{z}_{t})}{\boldsymbol{a}_{t+1}^{\text{DGD}} - \eta} \sum_{\boldsymbol{a}} (\boldsymbol{a}_{t}^{T} - \tilde{\boldsymbol{a}})^{\top} \nabla_{\boldsymbol{a}} L(\boldsymbol{a}_{t}, \boldsymbol{z}_{t})}{\boldsymbol{t} = 1, \dots, T}. \tag{1}$$
(Technical side note: For this update formula we assume that $A_{t}^{T} = E_{t}^{A}$. Moreover, the first action $\boldsymbol{a}_{t}^{\text{DSD}}$ is arbitrary.)

Conclusion: The regret of a learner with respect to a differentiable and convex loss function L is bounded by

- We know: Online linear optimization problems can be tackled by means of the FTRL algorithm!
- → Incorporate the substitution $\tilde{z}_t = \nabla_a L(a_t, z_t)$ into the update formula of FTRL with squared L2-norm regularization.

 The corresponding algorithm which chooses its action according to these considerations is called the *Online Gradient Descent* (OGD) algorithm with step size η > 0. It holds in particular,

$$a_{t+1}^{\text{OGD}} = a_t^{\text{DGD}} - \eta \nabla_{a}(a_{t}^{\text{DGD}}, z_t), \quad tt = 11, \dots, T.$$
 (1)

(Technical side note: For this update formula we assume that $A = \mathbb{R}^d$. Moreover, the first action $a_1^{0.00}$ is arbitrary.)

- We have the following connection between FTRL and OGD:
 - Let $\tilde{z}_t^{\text{DGD}} := \nabla_{s}(a_t^{\text{DGD}}, z_t)$ for any $t = 1, \dots, T$.
 - The update formula for FTRL with 2 norm regularization for the linear loss L¹ⁱⁿ and the environmental data Z̄^{00D} is

$$a_{t+1}^{\mathtt{FTRL}} = a_{t}^{\mathtt{FTRL}} - \eta \tilde{z}_{t}^{\mathtt{OGD}} = a_{t}^{\mathtt{FTRL}} - \eta \nabla_{a}(a_{t}^{\mathtt{OGD}}, z_{t}).$$

• If we have that $a_1^{\text{FTRL}} = a_1^{\text{DGD}}$, then it iteratively follows that $a_{t+1}^{\text{FTRL}} = a_{t+1}^{\text{DGD}}$ for any t = 1, ..., T in this case.

With the deliberations above we can infers that is action according to these considerations is called the Opline Gradient Descent (OGD) algorithm wfit slepter in Particular.

 If the deliberations above we can infers that is action according to these considerations is called the Opline Gradient Descent (OGD) algorithm wfit slepter in Particular.

 If the deliberations above we can infers that is action according to these considerations is called the Opline Gradient Descent (OGD) algorithm.

 If the deliberations above we can infers that is action according to these considerations is called the Opline Gradient Descent (OGD) algorithm.

 If the deliberation is called the Opline Gradient Descent (OGD) algorithm.

$$a_{t+1}^{\text{OSC}} \sum_{j=1}^{T} \mathcal{L}_{-\eta}^{\text{lin}} \left(a_{t,L}^{\text{DGD}} (\mathbf{z}_{t}^{\mathbf{Z}} \mathbf{f}^{\text{DGD}}, \mathbf{z}_{t}^{\mathbf{Z}}), \mathcal{L}_{t}^{\text{lin}} (\tilde{\mathbf{a}}_{t} \tilde{\mathbf{z}}_{t}^{\text{DGD}}) \right)_{T}. \tag{1}$$

(If
$$a_t^{\text{DGD}} = a_t^{\text{FTRL}}$$
) $t_{t=1}^T$ (Technical side note: For this update formula we assum $\sum_{t=1}^T L^{\text{Lin}}(a_t^{\text{FTRL}}, \tilde{\mathbf{z}}_t^{\text{DGD}}) = L^{\text{Lin}}(\tilde{\mathbf{a}}, \tilde{\mathbf{z}}_t^{\text{DGD}})$

We have the follow/RYTHQ (acc (Z)GD); ween FTRL and OGD:

where we write in the subscripts of the regret the corresponding loss function and also include the corresponding environmental data as a second argument in order to emphasize the connections.

$$\mathbf{a}_{t+1}^{\text{FTRL}} = \mathbf{a}_{t}^{\text{FTRL}} - \eta \tilde{\mathbf{z}}_{t}^{\text{OGD}} = \mathbf{a}_{t}^{\text{FTRL}} - \eta \nabla_{\mathbf{a}} L(\mathbf{a}_{t}^{\text{OGD}}, \mathbf{z}_{t}).$$

• If we have that $a_1^{\text{PTRL}} = a_1^{\text{DGD}}$, then it iteratively follows that $a_{t+1}^{\text{FTRL}} = a_{t+1}^{\text{DGD}}$ for any t = 1, ..., T in this case.

With the deliberations above we can infer that

$$\begin{split} R_{T,L}^{\text{OGD}}(\tilde{\boldsymbol{a}} \mid (\boldsymbol{z}_t)_t) &= \sum\nolimits_{t=1}^T \left(\boldsymbol{a}_{t+1}^{\text{DGDD}}, \boldsymbol{z}_t \right) - \left(\tilde{\boldsymbol{a}}_t(\tilde{\boldsymbol{z}}_t) \boldsymbol{z}_t \right) \\ &\leq \sum\nolimits_{t=1}^T L^{\text{lin}}(\boldsymbol{a}_t^{\text{DGD}}, \tilde{\boldsymbol{z}}_t^{\text{DGD}}) - L^{\text{lin}}(\tilde{\boldsymbol{a}}, \tilde{\boldsymbol{z}}_t^{\text{DGD}}) \\ & \text{ (if } \boldsymbol{a}_1^{\text{DGD}} = \boldsymbol{a}_1^{\text{FTRL}}) \sum\nolimits_{t=1}^T L^{\text{lin}}(\boldsymbol{a}_t^{\text{FTRL}}, \tilde{\boldsymbol{z}}_t^{\text{DGD}}) - L^{\text{lin}}(\tilde{\boldsymbol{a}}, \tilde{\boldsymbol{z}}_t^{\text{DGD}}) \\ &= R_{T,L^{\text{lin}}}^{\text{FTRL}}(\tilde{\boldsymbol{a}} \mid (\tilde{\boldsymbol{z}}_t^{\text{DGD}})_t), \end{split}$$

where we write in the subscripts of the regret the corresponding loss function and also include the corresponding environmental data as a second argument in order to emphasize the connections.

Interpretation: The regret of the FTRL algorithm (with 2 norm regularization) for the online linear optimization problem (characterized by the linear loss L¹ⁱⁿ) with environmental data Z̄_t^{DGD} is an upper bound for the OGD algorithm for the online convex problem (characterized by a differentiable convex loss) with the original environmental data Z_t.

ONLINE GRADIENT DESCENT: REGRETON AND PROPERTIES

- Due to this connection we immediately obtain a similar decomposition of the
- regret upper bound into a bias term and a variance term as for the FTRL algorithm for OLO problems.
- Corollary. Using the OGD algorithm on anylonline convex optimization problem (with differentiable loss function) leads to a regret of OGD with respect to any action ã ∈ A of ≤ ∑ L¹ⁱⁿ(a_t^{OGD}, Z̄_t^{OGD}) − L¹ⁱⁿ(ã, Z̄_t^{OGD})

$$\begin{split} R_{T}^{\text{QGD}}(\tilde{\mathbf{a}})^{\text{QGD}} &\leq \frac{1}{2\eta} \|\tilde{\mathbf{a}}\|_{2}^{2} \sum_{t=1}^{\eta} \sum_{l=1}^{T} \left\| \left(\tilde{\mathbf{z}}_{l}^{\text{QGD}} \right)^{2}_{l} \tilde{\mathbf{z}}_{l}^{\text{QGD}} \right) - L^{\text{lin}}(\tilde{\mathbf{a}}, \tilde{\mathbf{z}}_{l}^{\text{QGD}}) \\ &= R_{T,T^{\perp}}^{\text{PTIL}} \frac{1}{2\eta} \|\tilde{\mathbf{a}}\|_{2}^{2 \times 2\eta} \|\eta \sum_{t=1}^{T} \left\| \left| \nabla_{\mathbf{a}}(\mathbf{a}_{t}^{\text{OGD}}, z_{t}) \right| \right|_{2}^{2}. \end{split}$$

where we write in the subscripts of the regret the corresponding loss function and also include the corresponding environmental data as a second argument in order to emphasize the connections.

• Interpretation: The regret of the FTRL algorithm (with L_2 norm regularization) for the online linear optimization problem (characterized by the linear loss L^{lin}) with environmental data \tilde{z}_t^{DGD} is an upper bound for the OGD algorithm for the online convex problem (characterized by a differentiable convex loss L) with the original environmental data z_t .

ONLINE GRADIENT DESCENT: REGRET

- Due to this connection we immediately obtain a similar decomposition of the regret upper bound into a bias term and a variance term as for the FTRL algorithm for OLO problems.
- Corollary. Using the OGD algorithm on any online convex optimization problem (with differentiable loss function). leads to a regret of OGD with respect to any action ã ∈ A of

$$|\vec{R}_{T}^{000}(\vec{a}) \le \frac{1}{22\eta} ||\vec{a}||_{2}^{2} + \eta \sum_{t=1}^{T} ||\vec{z}_{t}^{000}||_{2}^{2}$$

$$= \frac{1}{22\eta} ||\vec{a}||_{2}^{2} + \eta \sum_{t=1}^{T} ||\nabla_{d}(a_{t}^{0000}, z_{t})||_{2}^{2}.$$

• Note that the step size $\eta>0$ of OGD has the same role as the regularization magnitude of FTRL: It should balance the trade-off between the bias- and the variance-term.

ONLINE GRADIENT DESCENT: REGRET

- As a consequence, we can also derive a similar order of the regret for the OGD algorithm on OCO problems as for the FTRL on OLO problems by imposing a slightly different assumption on the (new) "variance" term
- Cofoliary Using the DSD algorithm on any online convex optimization problem (with differentiable loss function L) leads to a regret of OGD with respect to any action $\tilde{a} \in \mathcal{A}$ of

$$\begin{split} R_T^{DGD}(\tilde{a}) & \leq \frac{1}{2\eta} ||\tilde{a}||_2^2 + \eta \sum\nolimits_{t=1}^T \left| \left| \tilde{z}_t^{DGD} \right| \right|_2^2 \\ & = \frac{1}{2\eta} ||\tilde{a}||_2^2 + \eta \sum\nolimits_{t=1}^T \left| \left| \nabla_a L(a_t^{DGD}, z_t) \right| \right|_2^2. \end{split}$$

 Note that the step size η > 0 of OGD has the same role as the regularization magnitude of FTRL: It should balance the trade-off between the bias- and the variance-term.

ONLINE GRADIENT DESCENT: REGRET

As a consequence, we can also derive a similar order of the regret for the OGD algorithm on OCO problems as for the FTRL on OLO problems by imposing a slightly different assumption on the (new) "variance" term
 \[\sum_{t=1}^T \| \nabla_a(\frac{a_0 \text{GEDE}}{t_t}, \nabla_t) \] \[\frac{2}{2} \].

- sup_{ā∈A} ||ã||₂ ≤ B for some finite constant B > 0
- sup_{a∈A,z∈Z} ||∇_a(a,z)||₂ ≤ V for some finite constant V > 0.

Then, by choosing the step size η for OGD as $\eta = \frac{\mathcal{B}}{V\sqrt{2T}}$ we get

$$R_T^{\rm GGD} \leq BV\sqrt{2T}$$
.

REGRET LOWER BOUNDS FOR OCO ET

- Theorem. For any online leakning algorithm there exists an online for the convex optimization problem characterized by a convex loss function. La bounded (convex) action space uAneti(+B,B)^d and bounded gradients sup a∈ √√e (a, z)|₁ ≤ V for some finite constants B, V > 0, such that the algorithm incurs a regret of Ω(√T) in the worst case.
 Corollary: Suppose we use the OGD algorithm on an online convex
- **Corollary:** Suppose we use the OGD algorithm on an online convex optimization problem with a convex action space $\mathcal{A} \subset \mathbb{R}^d$ such that
 - $\sup_{\tilde{a} \in \mathcal{A}} ||\tilde{a}||_2 \le B$ for some finite constant B > 0
 - sup_{a∈A,z∈Z} ||∇_aL(a,z)||₂ ≤ V for some finite constant V > 0.

Then, by choosing the step size η for OGD as $\eta = \frac{B}{V\sqrt{2T}}$ we get

$$R_T^{\text{OGD}} \leq BV \sqrt{2T}$$
.

REGRET LOWER BOUNDS FOR OCO

- Theorem. For any online learning algorithm there exists an online convex optimization problem characterized by a convex loss function \downarrow as bounded (convex) action space $\mathcal{A} = [-B, B]^d$ and bounded gradients $\sup_{a \in \mathcal{A}, z \in \mathcal{Z}} ||\nabla_a(a,z)||_2^u \leq V$ for some finite constants $B \in V > 0$ such that the algorithm incurs a regret of $\Omega(\sqrt{T})$ in the worst case.
- Recall that under (almost) the same assumptions as the theorem above, we have R_T^{GGD} ≤ BV√2T.

REGRET LOWER BOUNDS FOR OCO

- Theorem. For any online learning algorithm there exists an online convex optimization problem characterized by a convex loss function \downarrow as bounded (convex) action space $\mathcal{A} = [-B, B]^d$ and bounded gradients $\sup_{a \in \mathcal{A}, z \in \mathcal{Z}} ||\nabla_a(a,z)||_2^u \leq V$ for some finite constants B, VV > 0, such that the algorithm incurs a regret of $\Omega(\sqrt{T})$ in the worst case.
- Recall that under (almost) the same assumptions as the theorem above, we have R_□^{GGD} < BV√2T.
- → This result shows that the Online Gradient Descent is optimal regarding its order of its regret with respect to the time horizon T.

REGRET LOWER BOUNDS FOR OCO

- Theorem. For any online learning algorithm there exists an online convex optimization problem characterized by a convex loss function L, a bounded (convex) action space $\mathcal{A} = [-B,B]^d$ and bounded gradients $\sup_{a \in \mathcal{A}, z \in \mathcal{Z}} ||\nabla_a L(a,z)||_2$ Outlook finite constants B, V > 0, such that the algorithm incurs a regret of $\Omega(\sqrt{T})$ in the worst case.
- Recall that under (almost) the same assumptions as the theorem above, we have R₂^{GGD} ≤ BV√2T.
- → This result shows that the Online Gradient Descent is optimal regarding its order of its regret with respect to the time horizon T.

ONLINE MACHINE LEARNING: OUTLOOK

Online machine learning is a very large field of research.

Online Learning								
Statistical Learning Theory		Convex Opt	ex Outimization Theory		Game Theory			
Online Learning with Full Feedback			Online Learning with Partial Feedback (Bandits)					
Online Supervised Learning			Stochastic Bandit		Adversarial Bandit			
First-order Online Learning	Online Learning with Regularization		Stochastic Multi-armed Bandit		Adversarial Multi-armed Bandit			
Second-order Online Learning	Online Learning with Kernels		Bayesian Bandit		Combinatorial Bandit			
Prediction with Expert Advice	Online to Batch Convention		Stochartic Contentual Bandit		Adversarial Contestual Bandit			
Applied Online Learning			Online Active Learning	ı	Online Semi-supervised Learning			
Cost-Sensitive Online Learning	Online Collaborative Filtering		Selective Sampling		Online Manifold Regularization			
Online Multi-task Learning	Online Learning to Rank		Active Learning with Expert Advi	ice	Transductive Online Learning			
Online Multi-view Learning	Distributed Online Learning							
Online Transfer Learning	Online Learning with Neural Networks		Online Clustering		Online Density Estimation			
Online Metric Learning	Online Portfolio Selection		Online Dimension Reduction		Online Anomaly Detection			

Figure: Hoi et al. (2018), "Online Learning: A Comprehensive Survey".

ONLINE MACHINE LEARNING: OUTLOOK

Online machine learning is a very large field of research.

Online Learning								
Statistical Learning Theory		Convex Opt	mization Theory	Game Theory				
Online Learning with Full Feedback								
Online Supervised Learning			Stochastic Bandit		Adversarial Bandit			
First-order Online Learning	Online Learning with Regularization		Stochastic Multi-armed Bandit		Adversarial Multi-armed Bandit			
Second-order Online Learning								
Prediction with Expert Advice	Online to Batch Convention		Stochastic Contestual Bandit		Adversarial Contentual Bandit			
Applied Online Learning			Online Active Learnin	e e	Online Semi-supervised Learning			
Cost-Sensitive Online Learning	Online Collaborative Filtering		Selective Sampling		Online Manifold Regularization			
Online Multi-task Learning								
Online Multi-view Learning		fine Learning						
Online Transfer Learning	Online Learning with Neural Networks		Online Clustering		Ordine Density Estimation			
Online Metric Learning	Ordine Portfolio Selection		Online Dimension Reduction		Online Anomaly Detection			

Figure: Hoi et al. (2018), "Online Learning: A Comprehensive Survey".