ONLINE CONVEX OPTIMIZATION

Au gncfﬁtg@ dom?%cﬁ ﬁs@nw line learning problem is
the problem of online convex optimization ( ), which is characterized

by aloss function : A x Z — R, which is convex w.r.t. the action, i.e.,

Onfiné&esmexeOptinfization

a
Learning goals
@ Get to know the class of onling
convex optimization problems
@ See the online gradient descent
as a sat :va"T"‘,‘ earning
)
- algorithm for such cases
| :
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ONLINE CONVEX OPTIMIZATION

@ One of the most relevant instantiations of the online learning problem is
the problem of online convex optimization (OCO), which is characterized
by aloss function = A Z — IR whichlis convex wir.t.theaction i.e:
a+— (aczyisconvexfapany z.c Z:

@ Note that both OLO and OQO belong to the class of online convex
optimization problems:

@ Online linear optimization (OLO) with convex action spaces:
(a,z) = a'z is aconvex function in a € A, provided A is convex.

o Online quadratic optimization (OQO) with convex action spaces:
(a.2) = 3lla—z g is a convex function in a € A, provided A is
convex.
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ONLINE GRADIENT DESCENT.MOTIVATION

® Wehave seen that the FTRL algotithim with the ', normy regularizatwn
ea)reblen)af|S S ‘chieves sattsfactmy resuhs fof' onﬁnéhnedr racts
optimization (OLO? problems that ig!if {2, 2} 2L 115544, 2) 14" thén
we have ’

® NG Fugf ipddres 2 AL R frgn © e class of online

ptimization probien
RL“‘armL—qZ; b [j1,‘.‘..,T;v

o Online linear o™it

° Regret bolinds — By ah appropriate chonce of 1 and some e ( mlld)

assumptnons on A and Z we have -

1 1IN i iad A
ninéa

RYTRL — o(T).

__1:
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ONLINE GRADIENT DESCENT: MOTIVATION

Apparently, the nice form of the loss function L'!* is responsible for the O
appedling properties of FTRL in this'¢ase. Indeed, since' V' 1%, 2) =2
note that'the update rule canbe writtén'as x o

g _ gL — g Ll 7).
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ONLINE GRADIENT DESCENT: MOTIVATION

Apparently, the nice form of the loss function L'** is responsible for the
appealing properties of FTRL in this case. Indeed, since V,''%(a,2) = z
note that the update rule can be written as

g =& —nz=a —nVal (&, z).

Interpretation: In each time step t + 1, we
are following the direction with the steep-
est decrease of the loss (represented by
—VL=(a ™ z)) from the current "position”
al™t with the step size 5
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ONLINE GRADIENT DESCENT: MOTIVATION

Apparently, the nice form of the loss function L'** is responsible for the
appealing properties of FTRL in this case. Indeed, since V,''%(a,2) = z
note that the update rule can be written as

g =& —nz=a —nVal (&, z).

Interpretation: In each time step t + 1, we A
are following the direction with the steep-
est decrease of the loss (represented by

— V(g™ z)) from the current “position”
al™L with the step size i

> Gradient Descent.
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ONLINE GRADIENT DESCENT: MOTIVATION

® Question: Howto transfer this idea of the Gradient Descent for the
update formula to other loss functions, while still preserving the regret

O
bounds? x O
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ONLINE GRADIENT DESCENT: MOTIVATION

@ Question: How to transfer this idea of the Gradient Descent for the
update formula to other loss functions, while still preserving the regret

O
bounds? X O

@ Solution (for convex losses): Recall the equivalent characterization of
convexity of differentiable convex functions: x X

f:S8— Risconvex < f(y) = f(x)+(y —x)"Vi(x)forany x,y € S
e f(x)—f(y) < (x—y)"Vi(x)forany x, y € S.
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ONLINE GRADIENT DESCENT: MOTIVATION

@ Question: How to transfer this idea of the Gradient Descent for the
update formula to other loss functions, while still preserving the regret
bounds?

@ Solution (for convex losses): Recall the equivalent characterization of

convexity of differentiable convex functions:
f:8— Risconvex « f(y) = f(x)+(y —x)"Vi(x)forany x, y € S
& f(x)—f(y) < (x—y)"Vi(x)forany x, y € S.

® This means if we are dealing with a loss function : A x Z — R, whichis
convex and differentiable in its first argument (.4 has also to be convex),
then

-

(a.2) - (a.2) < (a—3)" Vy(a.2), Yaac Aze?Z.
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ONLINE GRADIENT DESCENT: MOTIVATION

. @ Reminder: (a.2) 1 (8:2) = (@i~ @), Vslaz)s 78,8 6425 2. O O x
l
L X L O
l
T X X
l
l
l
l
l
l
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ONLINE GRADIENT DESCENT: MOTIVATION

® Reminder: (a.z) (&lz) < (al=a) V,(az) ~Waaec A zeZ

® Lletz.....zrarbitrary envionmental dataand as... .. ar be some abitrary
action sequence. Substitute Z, := V,(a,, z;) and note that
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ONLINE GRADIENT DESCENT: MOTIVATION

® Reminder: (a.z) (&lz) < (al=a) V,(az) ~Waaec A zeZ

® Letz....,zr arbitrary envionmental data and a,.....ar be some aitrary
action sequence. Substitute 2, := V,(&1.z,) andmnotethat

Rr(a) = Z (ar.z) — (3.z) < Z(a, a) Vaia.z)

=Y (a-a) 2= a z-a z=> L*(a.z) L'*az).
r=1 r=1
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ONLINE GRADIENT DESCENT: MOTIVATION

® Reminder: (a.z) (&lz) < (al=a) V,(az) ~Waaec A zeZ

® Letz.....zr arbitrary envionmental data and a... .. .ar be some amitrary
action sequence. Substitute Z, := V ,(&;1z,) and notethat

] T T
i Rr(ad) =) (aaz) - (alz)d Y (al=a)" Vi(al)
| [ te1
T T
- ZZ(&—E) 2::28, 2,—5 Zz\ L™ a iv} L (a jj.
=1 e ’
] Conclusion: The regret of a learner with respect to a differentiable and convex
] loss function is bounded by the regret corresponding to an online linear
. optimization problem with environmenta Valar. zi)
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ONLINE GRADIENT DESCENT: MOTIVATION

® Reminder: (a.z) (&lz) < (al=a) V,(az) ~Waaec A zeZ

® Letz.....zr arbitrary envionmental data and a... .. .ar be some amitrary
action sequence. Substitute Z, := V ,(&;1z,) and notethat

- T 7
i Rr(ad) =) (aaz) - (alz)d Y (al=a)" Vi(al)
| [ te1
T T
- =Y (a-8) z=) a z-a z=) L"(az) L"Ez)
r=1 r=1
Conclusion: The regret of a learner with respect to a differentiable and convex
] loss function is boundedby the regret corresponding to an online linear
. optimization problem with environmenta Valar. z1)
] @ We know: Online linear optimization problems can be tackled by means of the
| FTRL algorithm!
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ONLINE GRADIENT DESCENT: MOTIVATION

® Reminder: (a.z) (&lz) < (al=a) V,(az) ~Waaec A zeZ

® Letz.....zr arbitrary envionmental data and a... .. .ar be some amitrary
action sequence. Substitute Z, := V ,(&;1z,) and notethat

T T
Rr(ad) =) (aaz) - (alz)d Y (al=a)" Vi(al)

T T
= (@-8"z2=)a z-a z=) L(az) L"Ez)

=1 =1
Conclusion: The regret of a learner with respect to a differentiable and convex
loss function is boundedby the regret correspon

optimization problem with environmental data z; Valdar Zt)

ding to an

oniine linear

@ We know: Online linear optimization problems can be tackled by means of the
FTRL algorithm!

» Incorporate the substitution z; = Va(a. z) into the update formula of FTRL with
squared L2-norm regularization.
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ONLINE GRADIENT DESCENT: DEFINITION /AND
PROPERTIES

® Thecorrespondihg algorithm which'chooses its actionaceording'to these
considerations is called 'the Online Gradienit Deseent(OGD) algorithm X O
with step size 1 > 0. It holds in particular,

AR I A e ) X X

(Technical sida ndte: Fafithis updhte fvmuta we assimathat A5 BY . Moroover, the first action a™ is arbivary. )
Y
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ONLINE GRADIENT DESCENT: DEFINITION AND
PROPERTIES

@ The corresponding algorithm which chooses its action according to these
considerations is called the Online Gradient Descent (OGD) algorithm
with step size 5 > 0. It holds in particular,

g =g V@™, z)). t=1_...T. (1)

(Technical sida nate: For this update formua we assume that 4 « RY. Moreover, the first action a?‘" is arbivary. )

@ We have the following connection between FTRL and OGD:

o Let Z[% .— V(&' z)forany t =1, ..., T.
@ The update formula for FTRL with 2 norm regularlzatlon for the
linear loss L*** and the environmental data z/*® is

FIRL FTRL ~ 03D FTRL 03D
ay = & Nz, = a nVala™. z).

o If we have that a[™ = a{*, then it iteratively follows that
ait = g0 forany t =1,..., T in this case.

]
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ONLINE GRADIENT DESCENT: DEFINITION AND
PROPERTIES

@ With the deliberations above we can infer-that
IS 1ae! T e g
Ri=(3 | {z):) - Zr~t (&% ze) = (8r 20)
T . e
S Zr: 1 le(a;,r_zr.,.r) . len(a_ ;,r)
(if &% — gfThL, T L -
{ S Zr 1 le(alr'm_zr...r) - (3, zr.ur)

2 A Ly (B2 )y

where_we write in the subscripts of the regret the corresponding logs
function and also include the corresponding environmental data as a
second argument in order to emphasize the connections.
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ONLINE GRADIENT DESCENT: DEFINITION AND
PROPERTIES

@ With the deliberations above we can infer that
r 0 3 -
Ry*(a| (1)) = Zr:t (&5 ze) —(a(z)
T
< ling 0GD 506Dy _ lingy 506D
- Zr=1 L (af 12t ) L (a*zr )
(if &f® = aj™) Zr

=

= Rra (3] (Z%)).

1 Llin(a:-'m.L‘?:)GD) . Llin(é, 2:)61))

where we write in the subscripts of the regret the corresponding loss
function and also include the corresponding environmental data as a
second argument in order to emphasize the connections.

@ Interpretation: The regret of the FTRL algorithm (with 2 norm
regularization) for the online linear optimization problem (characterized
by the linear loss L*i*) with environmental data 27 is an upper bound
for the OGD algorithm for the online convex problem (characterized by a
differentiable convex loss ) with the original environmental data z;.

]
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ONLINE GRADIENT DESCENT: REGRET O AND
PROPERTIES
@ Due to this connection we immediately obtain a similar decomposition of the O O x
o Tegretupper bound into.a. bias term and a variance term as for the FTRL
algorithm for OLO problems. x O
@ Corpllary. Using the BGD algorithm on)any/onling convex optimization problem
(with differentiable loss function )leads to a regret of OGD with respect toany
action a € A of NToL ‘ L a, : x X

-2\7’2 —M
[12

R?"(é):g- !
37148 =uZ |Vs(ai™. 2) ;-

4 0 . 4. | |} ] }J
I
i
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ONLINE GRADIENT DESCENT: REGRET

@ Due to this connection we immediately obtain a similar decomposition of the O O x
regret upper bound into a bias term and a variance term as for the FTRL
algorithm for OLO problems. x o
@ Corollary. Using the OGD algorithm on any online convex optimization problem
(with differentiable loss function ) leads to-aTegret of OGD with/ respecttoany
action a € A of X X

0 oy o N2 T 1002
@< ok +md IEIL
1w T .
=gy EE+mY ., |Valai™ 2],
@ Note that the step size 1) > 0 of OGD has the same role as the regularization

magnitude of FTRL: It should balance the trade-off between the bias- and the
variance-term.
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ONLINE GRADIENT DESCENT: REGRET

® Asa'‘consequence.we can also derived similarorder of the regret'for the
OGD algorithm on OCO problems as for the FTRL on OLO problems by
imposing a slightly differént assumption on the (new) “variance” term
S§of E'Va(a‘,m.z,)";

Lat=11)
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ONLINE GRADIENT DESCENT: REGRET

@ As a consequence, we can also derive a similar order of the regret for the
OGD algorithm on OCO problems as for the FTRL on OLO problems by
imposing a slightly different assumption on the (new) “variance” term

T 06D 2
Er=1 IIVa(ﬁF‘"'n-Zr) '2 4

@ Corollary: Suppose we use the OGD algorithm on an online convex
optimization problem with a convex action space .A C B9 such that

® supae 4 ||, = Bfor some finite constant B =
@ Supa ez ||V (a.z) , = Vforsome f|n|te constant V=0

Then, by choosing the step size 7 for OGD as 1 = we get

V_T

R%® < BV\2T.

Advanced Machine Lerning - 9/12

O0X

X X



REGRETLOWER BOUNDS FORGCO =1

@ Theorem:Forany online:learningalgorithm there exists an onling o1 the O O x
convex|optimization problem ¢charaeterizedby a-tonvexloss functior: /a
bounded (cohvex) actien:-spaceud stif+ B, B} and bounded gradients x O
SUP . 4 et (EVa( 2, 2)l, < V for some finite constants B, V > 0, such
that the al orthm ncurs a regret of Q(\ n the worst case.

@ Coroll 1r\,g I I eq 1,( )I 1 an onling nvex x x

i
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REGRET LOWER BOUNDS FOR OCO

@ Theorem. For any online learning algorithm there exists an online
convex optimization problem characterized by a convex loss function [a
bounded (convex) action space A = [—8, B]” and bounded gradients
SUP,e 4 ze z || Val&az)l], < Viforsemedinite constants 82V~ 00such
that the algorithm incurs a regret of Q(+/T) in the worst case.

@ Recall that under (almost) the same assumptions as the theorem above,
we have RY™® < BV\2T.

Adanced Machine Lexrning - 10/12



REGRET LOWER BOUNDS FOR OCO

@ Theorem. For any online learning algorithm there exists an online
convex optimization problem characterized by a convex loss function [a
bounded (convex) action space A = [—8, B]” and bounded gradients
SUP,e 4 ze z || Val&az)l], < Viforsemedinite constants 82V~ 00such
that the algorithm incurs a regret of Q(+/T) in the worst case.

@ Recall that under (almost) the same assumptions as the theorem above,
we have RY™ < BV\2T.

~+ This result shows that the Online Gradient Descent is optimal regarding
its order of its regret with respect to the time horizon T.
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] REGRET LOWER BOUNDS FOR OCO

@ Theorem. For any online learning algorithm there exists an online
convex optimization problem characterized by a convex loss function L, a
bounded (convex) action space A = [—B, B]” and bounded gradients

SUPLe 42c 2 || Val(a. 2), o‘ﬁﬂé@d finite constants B, V = 0. such

that the algorithm incurs a regret of Q2(4/ T) in the worst case.

@ Recall that under (almost) the same assumptions as the theorem above,
we have R?® < BV\2T

+ This result shows that the Online Gradient Descent is optimal regarding
its order of its regret with respect to the time horizon T
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ONLINE MACHINE LEARNING: OUTLOOK
Online machine learning is a very large field of research. O O X

Online Learning x O

Sexcand oo vl Lewming Oviine Learming with Eermeh Bt Banci Contiratorid Bt
Peadicion with Lt Advice Cviire 3 Batch Converdon Stachantc Cortentasl Qande Asweriatial Cormatas! Bande
Appied Onkne Learning Oniine Active Learning Ordine Semisupervised Learing

2. Sensivor Osbre Loawirg vk Colabasasos Filtiving Sobectioe Sarghng Ovbre Maitold Aagdariaion

Woirwe MLk Losring vl Liarning s Fark Active Lawring with Expert Adwics Tonduxctve Ordee Leaming

Vv MU nen Leararg Distrbatud Onioe Lowrring

Onlliws Traruter Learring Oviire Learsing with Neutsl Networks — Onfine Clintering Cvlire Coraity [uthmation

Wi Metrk Lasaing Ordre Portiolio wiectios Onine Dirsension Pedhction Orbre Arcenaly Detection

Figure: Hoi et al. (2018). "Online Learning: A Comprehensive Survey”.
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ONLINE MACHINE LEARNING: OUTLOOK

Online machine learning is a very large field of research.

Online Learning

Stathtical Laarming Theory Correns Optimization Theory Geme Theory
Online Leaming with Full Feadback Onine Learring with Partiad Feedback [Bandits)
Dalice Supervised Learning Stachastic Bandt Advarsacial Bandt
v “ ' '
Agphed Online Leawning Online Active Learning Onfine Semisupervised Learning

Figure: Hoi et al. (2018), "Online Learning: A Comprehensive Survey”.
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