MULTI-TARGET PREDICTION: MOTIVATION

- Conventional supervised learning: Label space ${\mathcal Y}$ is 1-D.
 - Multi-target prediction (MTP): multiple targets of mixed types (binary, nominal, ordinal, real-valued).
- Learn one model per target independently? Largets can be statistically dependent.
 - Multi-label Emotions Dataset: 4 emotions of a music piece.
 Multiple emotions may be attributed to a single piece. Mutual information of the labels are:

81101 Text1 80111 Text2		0	0 1 1	Calm	orediction problems Quiet Sad Angry Know relevant special cases of
2000 Test			Calm		0.073ti-ta0:018edic 0.290
11111 Toda			Quiet	0.073 0.018	1.000lers0.24the dil0.164e 0.24twee1.000ctive 0.067
			Angry		0.164 0.067 1.000 blems

It might be better to tackle targets simultaneously.

MULTI-TARGET PREDICTION: CHARACTERISTICS

Characterized by instances $x \in \mathcal{X}$ and targets $m \in \{1, 2, 1, \dots, l\}$ with

- following properties:

 MUTH target prediction (MTP): multiple targets of mixed types

 A training set \mathcal{P}_{aff} , $\{(\mathbf{x}_{in}^{(i)}, \mathbf{y}_{i}^{(i)})\}_{i=1}^{n}$ where $\mathbf{y}^{(i)} = (y_1^{(i)}, \dots, y_l^{(i)})$, with
 - Learn one model per target m independently? -- Targets can be
 - n instances and targets \rightsquigarrow Labels $y_m^{(i)}$ can be arranged in an $n \times l$

 - matrix Y. Note Y may have missing values.
 Multi-label Emotions Dataset: 4 emotions of a music piece.
 Target spaces Y can be nominal, ordinal or real-valued.
 Multiple emotions may be attributed to a single piece. Mutual
 - Goal: predict scores for any pair (x, m) ∈ X × {1, 2, ..., I}.

In conventional MTP setting: no available side information for targets.

Calm	1.000	0.073	0.018	
Quiet	0.073	1.000		
Sad	0.018		1.000	0.067
Angry			0.067	1.000

It might be better to tackle targets simultaneously.

MULTIVARIATE REGRESSION CHARACTERISTICS

Target: space: $V_W = \mathbb{R} V_M = \mathbb{R} \{0, 2, and t\}$ rights $m \in \{1, 2, ..., t\}$ with following properties:

- A training set $\mathcal{D} = \{(\mathbf{x}^{(i)} \mathbf{Mol}(i)) \mathbf{Mol}(i), \mathbf{Mol}(i), \mathbf{Mol}(i), \mathbf{Mol}(i), \mathbf{y}_{t}^{(i)}, \mathbf{Mol}(i), \mathbf{y}_{t}^{(i)}, \mathbf{Mol}(i), \mathbf{y}_{t}^{(i)}, \mathbf{Mol}(i), \mathbf{y}_{t}^{(i)}, \mathbf{y}_{t}^{(i)},$
- n instances and / targets -- Labels y_e⁽¹⁾ can be arranged in an n × 1 matrix Y. Note Y may have missing values.
- Target spaces man be hombal, ordinar or rearvalded.
- Goal: predidf%tor for 3 thy pair (x,1/3) ∈1,3′ × 1,7,2,5,2., /}.

In conventional (10) Pathing,7 no 23 vailable sixte information for targets.

Waegeman et al. (2019), Multi-target prediction: A unifying view on problems and methods (URL).

Example: Predict binding strength between proteins (rows) and molecules (columns).

MULTI-LABEL CLASSIFICATION

Target space $\mathcal{Y}_m = \{0 \forall 1\} \forall m \in \{1, 2, l\} \dots l\}$

		Tennis	Football	Biking	Movies	MM5	Belgium
01101	Text1	103	012	101	107	315	113
00111	Text2	1	107	105	705	802	716
01110	Text3	002	0	003	014	112	202
10001	Text4	301	101	113	101	117	502
01011	Text5	417	201	205	115	203	805
11110	Text6	?	?	?	?	?	?

Waegeman et al. (2019), Multi-target prediction: A unifying view on problems and methods (URL).

Example: Assign documents: (rows): do/category/dags ((columns). molecules (columns).

L'ABELIRANKING ASSIFICATION

In label ranking, each instance is associated with a ranking of targets. $\mathcal{Y}_m = \{1, \ldots, l\} \ \forall m$, and labels (i.e., ranks) $y_m^{(i)} \neq y_k^{(i)} \forall m \neq k$.

Example: Predict for users (rows) their preferences over specific activities (columns).

MULTI-TASK LEARNING

In label ranking each instance is associated with a ranking of targets.

Not all targets are relevent for

• Label space is homogenous across columns of Y, e.g., $\mathcal{Y}_m = \{0, 1\}$ or $\mathcal{Y}_m = \mathbb{R}$ for all m.

Example: Predict for students (rows) the final grades for a specific

high-school course (columns). 3 5 2 6 4

Waegeman et al. (2019), Multi-target prediction: A unifying view on problems and methods (URL)

Example: Predict for users (rows) their preferences over specific activities (columns).

REMARKSK LEARNING

- It is also possible when the mth task is multiclass classification. That is: f(x)_m ∈ R^{g_m} is the probability predictions for g_m classes. MaThe techniques for multi-target learning are also applicable under this setting, notation becomes cumbersome.
- Target space can be inhomogeneous, e.g. $\mathcal{N}_m = \{0,1\}$ and \mathcal{N}_m

Example: Predict for students (rows) the final grades for a specific high-school course (columns).

SIDE INFORMATION ON TARGETS

Sometimes additional side information about targets is available.
 That is, f(x)_m ∈ R^{gm} is the probability predictions to a significant sides.

Extra representation for the target learning as also applicable tholecules in drug design (structure).

• Tured representation) inhomogeneous, e.g., $3 = \{0,1\}$, and $y_k = \mathbb{R}$.

A mixture of multi-label classification and multivariate

regression.

 Taxonomy on document categories (hierarchy).

SIDE INFORMATION ON TARGETS /2

- Sometimes, additional side information about targets is available.
- Information about schools (geo-
- graphical location, school reputation) in student mark forecasting (feature representation).

Walegeman et al. (2019), Multi-target prediction: A unifying view on problems and methods (<u>URL</u>).

- Such problems are referred to as dyadic or link prediction.
- tabels $y_m^{(i)}$ can be arranged in a matrix Y, which is often sparse.
- Thus, dyadic prediction can be seen as multi-target prediction with target features.

INDUCTIVE VS. TRANSDUCTIVE LEARNING

- In previous problems,
- predictions need to be generated for novel instances. a targets are known beforehand and observed during training.
- These problems are inductive w.r.t. instances and transductive w.r.t. targets representation).
- Side information is important for
 - deneralizado novertardets o as dyadic or
- Labela novel target molecule in a matrix */ * which is often
- Thusthe drug design on can be seen as malti-target prediction with 1.1 1.3 1.1 1.7 5.2 tare a novel tag in the document annotation.

Waegeman et al. (2019), Multi-target prediction: A unifying view on problems and methods (URL).

SUBDIVISION: OF DIFFERENT LEARNING VG SETTINGS

- In previous problems,
- Setting Aicti transductive wife targets and instances Goal: predict missing values of score matrix (matrix completion) during training.
- Setting Bobb transductive w.r.t. targets and inductive w.r.t.uctive instances (classical supervised learning).
- Setting C inductive w.r.t. targets and transductive w.r.t. instances.
- Side information is important for Some targets are unobserved generalizing to novel targets. during training but may appear at prediction time get molecule in
- Setting D inductive w.r.t. both targets and instances (zero-shot learning).ment annotation,

Walegeman et al. (2019), Multi-target prediction: A unifying view on problems and methods (URL).

Wasgeman et al. (2019), Multi-target prediction: A unifying view on problems and methods (URL).

SUBDIVISION OF DIFFERENT LEARNING SETTINGS

- Setting A transductive w.r.t. targets and instances. Goal: predict missing values of score matrix (matrix completion).
- Setting B transductive w.r.t. targets and inductive w.r.t. instances (classical supervised learning).
- Setting C inductive w.r.t. targets and transductive w.r.t. instances.
 Some targets are unobserved during training but may appear at prediction time.
- Setting D inductive w.r.t. both targets and instances (zero-shot learning).

Walegeman et al. (2019), Multi-target prediction: A unifying view on problems and methods (URL).

