RECAP: PERFORMANCE MEASURES FOR BINARY CLASSIFICATION

Advanced Machine Learning We encourage readers to first go through

- In binary classification (𝒴 {−1,+1}):

 F₁ score balances Recall (ρ_{TPR}) and Precision (ρ_{PPV}): Learning goals

- Note that ρ_F , does not account for TN? Know their advantages over
- Does ρ_F, suffer from data imbalance like accuracy does?
- Know extensions of these measures for multiclass settings

FESCORE IN BINARY CLASSIFICATION OR BINARY CLASSIFICATION

We encourage readers to first go through					0.75	0.89	1
• In binary classification ($\mathcal{Y} = \{-1, +1\}$):	- 0	0		0.53	0.69		0.89
F_1 is the harmonic mean of ρ_{PPV} & ρ_{TPR} frue Class $\stackrel{\text{def}}{\leftarrow}$	- 0	0		0.48			
→ Property of harmonic mean: tends more 0.4	- 0	0	027	0.4	0.48	0.53	
towards the lower of two combined values.	- 0	0	02P	P6.27	0.3	0.32	
$\rho_{TPR} = \frac{1P}{TP + FN} \qquad \rho_{DR} \text{ 0.0}$	P - TI	Q	(PA)	000=	TOTAL	0	
	_						

- F_1 score balances Recall (ρ_{TPR}) and Precision ($\rho_{PPV}^{0.0}$): 0.2 0.4 0.6 0.8 1.0 $\rho_{PPV}^{0.0}$
- A model with $\rho_{TPR} = 0$ or $\rho_{PPV} = 0$ has $\rho_{PV} = 0$
- Always predicting "negative": $\rho_{TPR} = \rho_{F_1}^{\rho_{PPP}} 0^{+\rho_{TPR}}$
- Always predictings positive unt for TN.
- $\ell T = \frac{1}{2} \frac{1}$
- Hence, F₁ score is more robust to data imbalance than accuracy.

F₈ IN:BINARY CLASSIFICATION CATION

- F_1 puts equal weights to $\frac{1}{\rho_{PPV}}$ & $\frac{1}{\rho_{TPR}}$ because $F_1 = \frac{2}{\frac{1}{\rho_{PPV}} + \frac{1}{\rho_{TPR}}}$.
- F₁ tF₃ puts 8² times of weight to: 1/F₃ puts 8² times 1/F₃ puts 8² time

towards
$$\mu_{\beta} = \underbrace{\frac{\text{Lower of two combined values.}}{\frac{\beta^2}{1+\beta^2} \cdot \frac{1}{\rho_{TPR}} + \frac{1}{1+\beta^2} \cdot \frac{1}{\rho_{PPV}}}_{\beta^2 \rho_{PPV} + \rho_{TPR}}$$

$$= (1 + \beta^2) \cdot \frac{\rho_{PPV} \cdot \rho_{TPR}}{\beta^2 \rho_{PPV} + \rho_{TPR}}$$

- $\beta \gg del-wittF_{\beta}\approx \rho \tau \rho \hat{\kappa}$; or $\rho_{PPV}=0$ has $\rho_{F_1}=0$.
- Always predicting "positive": $\rho_{TPR} = 1 \Rightarrow \rho_{F_1} = 2 \cdot \rho_{PPV} / (\rho_{PPV} + 1) = 2 \cdot n_+ / (n_+ + n),$ \leadsto small when $n_+ (= TP + FN = TP)$ is small.
- Hence, F₁ score is more robust to data imbalance than accuracy.

G SCORE AND G MEAN CATION

- G score uses geometric mean: $\frac{1}{\rho_{TPR}}$ because $\frac{1}{\rho_G} \equiv \frac{2}{\sqrt{D_{RPV} + D_{TPR}}}$
- Geometric mean tends more towards the lower of the two combined values.

- Closely related is the G mean:
- $\beta \ll 1 \rightsquigarrow F_{\beta} \approx \rho_{PPV}$. $\rho_{Gm} = \sqrt{\rho_{TNR} \cdot \rho_{TPR}}$.

It also considers TN.

Always predicting "negative": ρ_G = ρ_{Gm} = 0 → Robust to data imbalance!

BALANCED ACCURACY

- G score uses geometric mean:
- Balanced accuracy (BAC) balances
- Geometric mean tends more towards the low φτινή the phun combined values. 2
- Geometric mean is larger than harmonic mean.

• If a classifier attains high accuracy on both classes or the data set is almost balanced, then $\rho_{BAC} \approx \rho_{ACC}$.

$$\rho_{Gm} = \sqrt{\rho_{TNR} \cdot \rho_{TPR}}$$
.

It also considers TN.

- However, if a classifier always predicts "negative" for an imbalanced data set, i.e.
- Always predicting negative: ρ_{RC} If also considers TN.

MATTHEWS CORRELATION COEFFICIENT

- Recall: Pearson correlation coefficient (PCC)
- Balanced accuracy (BAC) $Corr(X, Y) = \frac{Cov(X, Y)}{COV(X, Y)}$ PTNR and PTPR:
- View "predicted" and "true" classes as two binary random variables
- Using entries in confusion matrix to estimate the PCC, we obtain MCC:

$$\rho_{MCC} = \frac{TP \cdot TN - FP^{0.0}FN^{2}}{\sqrt{(TP + FN)(TP + FP)(TN + FN)(TN + FP)}}$$

- In contrast to other metrics:
 - MCC uses all entries of the confusion matrix;
- MCC has value in [-1, 1].
 However, if a classifier always predicts "negative" for an imbalanced data set, i.e.

$$n_{+} \ll n_{-}$$
, then $\rho_{BAC} \ll \rho_{ACC}$. It also considers TN.

MATTHEWS CORRELATION COEFFICIENT

Recall: Pearson correlation cppffiqtnt_(PPC)FN

$$\rho_{MCC} = \frac{1}{\sqrt{(TP + FN)(TP + FP)(TN + FN)(TN + FP)}}$$

$$Corr(X, Y) = \frac{1}{\sqrt{TN + FN}(TN + FP)}$$

- $\rho_{MCC} \approx 1 \leadsto$ nearly zero error \leadsto good classification, i.e., strong
- correlation between predicted and true classes.
 view predicted and true classes as two binary random variables.
- Using entries in confusion matrix to estimate the PCC we obtain MCC: $\rho_{MCC} \approx 0 \stackrel{\sim}{\sim} no$ correlation, i.e., not better than random guessing.

- ρ_{MCC} ≈ ^{Δ1} reversed classification, i.e. (switch labels N + FP)
- Previous measures requires defining positive class. But MCC does not depend on which class is the positive one trix;
 - MCC has value in [−1, 1].

MULTICLASS CLASSIFICATION EFFICIENT

- ρ_{MCC} ≈ 0 → no correlation, i.e., not better than random guessing.
 n_{ji}: the number of *i* instances classified as *j*.
- p_{i,i,□} ∑_{i=1}^g n_{ji} the total number of instances witch labels.
- Class-specific metrics:
- Previous measures requires defining positive class. But MCC does not depend on which class (Recall):
 - True negative rate $\rho_{TNR_i} = \frac{\sum_{j \neq i} n_j}{n_j n_j}$
 - Positive predictive value (Precision) ρ_{PPRj} = n_j/√y_i, n_i.

MACROLFA SCORESSIFICATION

Average over classes to obtain a single value

c.age cre		locot ip cold	ar a origio raid		g
Classification	1	nii	n ₁₂		n _{1 a}
		(True 1's)	(False 1's fog2's)		(False 1's for gls)
	2	721	122		n _{2g}
ŷ		(False 2) PmMET	TRIC ≂Too 2) , PM	ETRIC:	(False 2's for g/s)
			$g \underset{i=1}{\overset{\sim}{\smile}}$		
	:		J=1		

where METRIC is a class-specific metric such as PPV, TPR, of class i.

- With this, one can simply define a macro F₁ score:
 n_{ii}: the number of i instances classified as j.

•
$$n_i = \sum_{j=1}^g n_{ji}$$
 the total number of i ipsilarvce p_{mTPR}

$$\rho_{mF_1} = 2 \cdot \frac{i}{\rho_{mPRV} + \rho_{mTPR}}$$

- Class-specific metrics:
- Problem: each class equally weighted

 class sizes are not considered.
- How about applying different weights to the class-specific metrics?
 - Positive predictive value (**Precision**) $\rho_{PPR_i} = \frac{n_i}{\nabla^{ij} \cdot n_i}$.

WEIGHTED MACRO F1 SCORE

- For imbalanced data sets, give more weights to minority classes.
- $w_1, \ldots, w_g \in [0, 1]$ such that $w_i > w_j$ iff $n_i < n_j$ and $\sum_{i=1}^g w_i = 1$. $\rho_{\textit{MMETRIC}} = \frac{1}{g} \sum_{g_{-i}} \rho_{\textit{METRIC}_i},$ $\rho_{\textit{WmMETRIC}} = \frac{1}{g} \sum_{g_{-i}} \rho_{\textit{METRIC}_i} \textbf{\textit{W}}_i,$ where \textit{METRIC}_i is a class-specific $g_{i,g_{-i}}$ of class i.
- where METRICais a class-specific metric such as PPV_i, TPR_i of class i.
- Example: $w_i = \frac{n-n_i}{(g-1)n}$ are suitable weights. Weighted macro F_1 scorer = $2 \cdot \frac{\rho_{mPPV} \cdot \rho_{mTPR}}{\rho_{mPPV} + \rho_{mTPR}}$
- Problem: each class

 Problem: eac
- How about applying different weights to the class-specific metrics?
- This idea gives rise to a weighted macro G score or weighted BAC.
- **Usually**, weighted F_1 score uses $w_i = n_i/n$. However, for imbalanced data sets this would **overweight** majority classes.

OTHER PERFORMANCE MEASURES

- "Micro" versions de.g. sthe micron TRR is explication in the control of the micron TRR is explicitly μεταιού μετ
- $w_1, \ldots, w_g \in [0, 1]$ such that $w_i > w_j$ iff $n_i < n_j$ and $\sum_{i=1}^g w_i = 1$. MCC can be extended to:

$$\rho_{MCC} = \frac{p_{wmMETFR} \sum_{i=1}^{g} \int_{n_{i}}^{g} p_{i} \sum_{j=1}^{g} \hat{n}_{i}^{j} n_{i}}{\sqrt{(n^{2} - \sum_{j=1}^{g} \hat{n}_{i}^{2})(n^{2} - \sum_{j=1}^{g} n_{i}^{2})}},$$
 where $METRIC_{i}$ is a class-specific inetric such as $P^{-1}V_{i}^{j}$ TPR_{i} of class i .

- Where $\hat{n}_i = \sum_{j=1}^g n_{ij}^g$ is the total number of instances classified as i.
- Weighted macro F_1 score:
- Cohen's Kappa or Cross Entropy (see Grandini et al. (2021)) treat "predicted" and "true" classes as two discrete random variables.

$$ho_{wmPPV} +
ho_{wmTPR}$$

- This idea gives rise to a weighted macro G score or weighted BAC.
- **Usually**, weighted F_1 score uses $w_i = n_i/n$. However, for imbalanced data sets this would overweight majority classes.

WHICH PERFORMANCE MEASURE TO USE?

- Since different measures focus on other characteristics

 No golden answer to this question.
- Depends on application and importance of characteristics.
- However, it is clear that accuracy usage is inappropriate if the data set is imbalanced. Use alternative metrics.
- Be careful with comparing the absolute values of the different measures, as these can be on different "scales", e.g., MCC and BAC, where n_i = \(\sum_{i=1}^{n} n_{ij} \) is the total number of instances classified as i.
- Cohen's Kappa or Cross Entropy (see Grandini et al. (2021)) treat "predicted" and "true" classes as two discrete random variables.

WHICH PERFORMANCE MEASURE TO USE?

- Since different measures focus on other characteristics → No golden answer to this question.
- Depends on application and importance of characteristics.
- Be careful with comparing the absolute values of the different measures, as these can be on different "scales", e.g., MCC and BAC.

