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Fi-SCOREINBINARY CLASSIFICATIONO
BINARY CLASSIFICATION

@ We encourage readers to first go thre
@ In binary classification () 1.+1

F1 is the harmonic mean of peev & prerg.,. oo
—+ Property of harmonic mean: tends more
towards the lowerof two comﬁined values.
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A model with prer = Oorppw =0 bas = I
Always predicting "negative™ prer = pr, = 0

Aways gredicting=positive™ nt for TH.
prea-= 1 Zlhim 2 ;{m,(pm*1) 2. nH(n* i),
~ smallwhen n; (= TP + FN = TP) is small.

Hence, F1 score is more robust to data imbalance than accuracy.
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F; NCBINARY ' CLASSIFICATION
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G SCORE'AND GMEAN

@ G score uses geometric mean;

PG = \ioeev - QTPR

Geometric mean tends more
towards the lower of the two
combined-values.

Geometric mean is larger than

harmonic mean.

Closely related is the G mean:

It also considers TN.

Always predicting "negative™ pg =

Pem =

O 0X

X X

pam = 0 ~ Robust to data imbalance!
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BALLANCED ACCURACY

O
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@ Balanced accuracy (BAC) balances « 0.6- x O
g and preq: =
CAietné e a 04
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® [faciassifierattainschigh-accuracy on both classes or the data set is almost
balanced, then pgac = pace.

® However, if a classifier always predicts “negative” for an imbalanced data set, i.e.
ny < n Jthen pasc < pace! it also'considers TN.
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MATTHEWS CORRELATION COEFFICIENT

@ Recall: Pearson correlation coefficient (PCC):
@ Balanced accuracy \B/‘\:';'GQHQ_(LY) @«

|

|

|

yand porer

TP- TN — FP-FN

Pmec =

(TP + FN)(TP + FP)(TN + FN)(TN 1 FP

@ If a classifier attains high accuracy on both classes or the Jata set is almost

@ In contrastto othermetrics:

@ MCC uses all entries of the confusion matrix:
° MCC has value ml 1.1).

@ However, it a classifier alway's predicts negative” for an imbalanced data set, i.e.
then pax paCe.
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MATTHEWS CORRELATION COEFFICIENT
® Recall: Pearson correlation cppfliginnt(FPCEN O0OX

PMeC = JTTP + FN)(TP + FPI{IN + EN)(IN + FP) X ®

® ppec = 1~ nearly zero error ~ good classification, i.e., strong
» Correlation between predicted and true classes. x x

8 it <'0" A0 Coeiation, e nét better than random Guessing.

@ ppeoe = s reve

8 Previousmeasutes'reqlires defining positive class. But MCC does not
depend anwhich class is the-pasitive one:

o
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MULTICLASS CLASSIFICATION - HICIENT
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e

N o True pogmye qa}te (Rﬁcall) /qrpn‘ ;f‘“

E 7 T
@ True negative rate pryg, = ==

o Positive predictive value (Precision) pppg =
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MACRO! A SCORE-CIFICATION

@ Average over cI#sses to obtain a single vallié O O x
- ssicaton 9
PmMETRIC =™ E PMETRIC; s x O

=1

X X

where METRIC) is-a-class-specific.-metric such as PPV,, TPR; of class i.

wnm this, one can snmply dehn? a macro F1 score:
o 1€ numoel 1N es 15

@ n N9 . n, the total number of | ipgRERCEPMTPR
) P, = 25— ———
PmPev + PmTPR

@

Class-specific metrics
Problem: each, class equally weighted -~ class sizes are not considered.

How agqu; applying, different weights to the class-specific metrics?

@ Positive predictive value (Precision) e
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WEIGHTED'MACRO F; SCORE

For imbralanced data-setsi give more weights to minority classes.
Wi, ..., w, € [0,1] such that w; > w; iffn, < njand 37, wy = 1.
. N oo

)
1
PwmMETRIC = E PMETRIC Wi,
; 7

IETRIC; is a class-specif

such as PPV,, TPR, of class i

wherenMETRIChis a classsspecificimetric suchas: PPV, TPR; of class /.

Example: w; = are suitable weights.

[9 l]
Weighted macro F; scorer  °

Problem: ¢ o ewgig waPPV | PwmTPA,. . nsidered

/’umPPV + /’umTPR _
How about applying different weights the class-specific metrics

@ This idea givesrisetoa weighted macro G score or weighted BAC.

Usually, weighted F, score uses w; = n;/n. However, for imbalanced
data sets this would overweight majority classes.

i
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] OTHER PERFOBMANCE MEASURES

@ "Mictol. versions eg. cthe micton TRR s amresaaginority clasee: O0X
o ) ich that w, iff n n,and 5 W
° MCCcanbeextended to: ' X O

PMEC = —= LDPre ,r} Sk . X X
where METRIC, is a u\""'(u Z ‘r')('f Z'*'

whereofy =~ A is the total number of-instances classified as /.

lass i

Weighted macro f
Cohen's Kappa or Cross Entropy (see Grandini et al. (2021)) treat
"predicted"” and "true" classes as two discrete random variables.

[

@ This idea gives rise to a weighted macro G ¢ - weighted BA(

@

Usually. weighted F, score uses w n;/n. However, for imbalanced
jata sets this would overweight majority classe:

BN B NN BN D .
®
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# WHICH PERFORMANCE MEASURETO USE?

@ Sincedifferent measu rés: focus on‘other-gharaeteristics ~+ No golden O O x
answer to this question.

@ Depends an application@and importance of characteristics. x O

However, it is clear that accuracy. usage is.inappropriate if the data set is x x
imbalanced. ~- Usg alternative-metrics '

Be careful with comparing the absoluté vallies of the'différent measures,
as these can bg on diﬁe’rem “scales”, e.g.. MCC and BAC.[
wriere / i / 1€ il NUMmo el I 111 CE i €
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WHICH PERFORMANCE MEASURE TO USE?

@ Since different measures focus on other characteristics ~~ No golden
answer to this question.

Depends on application and importance of characteristics.

@ However, it is clear that accuracy usage is inappropriate if the data set is
imbalanced. ~~ Use alternative metrics.

@ Be careful with comparing the absolute values of the different measures,
as these can be on different “scales”, e.g.. MCC and BAC.
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