TRAINING OF A GAUSSIAN PROCESS

 To make predictions for a regression task by a Gaussian process, one simply needs to perform matrix computations.

Go But for this to work out, we assume that the covariance functions is fully given, including all of its hyperparameters.

A very nice property of GPs is that we can fearn the numerical hyperparameters of a selected covariance function directly during Likelihood estimation of its

hyperparameters

 Computational complexity is governed by matrix inversion of the covariance matrix

TRAINING A GP VIA MAXIMUM LIKELIHOOD

Let us assume predictions for a regression task by a Gaussian process, one simply needs to perform matrix computations.

$$y = f(\mathbf{x}) + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma^2),$$

where $f(\hat{\mathbf{x}})$ $f(\hat{\mathbf{x}})$ $f(\hat{\mathbf{x}})$ $f(\hat{\mathbf{x}})$ $f(\hat{\mathbf{x}})$ $f(\hat{\mathbf{x}})$ assume that the covariance functions is fully given, including all of its hyperparameters.

Observing $\mathbf{y} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{K} + \sigma^2 \mathbf{I}\right)$, the marginal log-likelihood (or evidence) is nice property of GPs is that we can learn the numerical hyperparameters of a selected covariance function directly during $\log p(\mathbf{y} + \mathbf{i} \mathbf{X}, \mathbf{P}) = \log \left[(2\pi)^{-n/2} |\mathbf{K}_y|^{-1/2} \exp\left(-\frac{1}{2} \mathbf{y}^\top \mathbf{K}_y^{-1} \mathbf{y} \right) \right]$ $= -\frac{1}{2} \mathbf{y}^\top \mathbf{K}_y^{-1} \mathbf{y} - \frac{1}{2} \log |\mathbf{K}_y| - \frac{n}{2} \log 2\pi.$

with $K_y := K + \sigma^2 I$ and θ denoting the hyperparameters (the parameters of the covariance function).

TRAINING A GP VIA MAXIMUM LIKELIHOOD /2

The three terms of the marginal likelihood have interpretable roles, considering that the model becomes less flexible as the length-scale increases: $y = f(\mathbf{x}) + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma^2)$,

where the data fit $\mathcal{P}_{\mathbf{x}}^{1} \mathbf{y} \mathbf{x}^{\mathcal{K}_{\mathbf{x}}^{-1}} \mathbf{y} \mathbf{y}^{\mathcal{K}_{\mathbf{x}}^{-1}} \mathbf{y} \mathbf{y}^{\mathcal{K}_{\mathbf{x}}^{-1}} \mathbf{y} \mathbf{y}^{\mathcal{K}_{\mathbf{x}}^{-1}} \mathbf{y} \mathbf{y}^{\mathcal{K}_{\mathbf{x}}^{-1}} \mathbf{y}^{\mathcal{K}_{\mathbf{x}$

obe the complexity penalty $-\frac{1}{2}\log |K_{yd}|$ which depends on the evidecovariance function only and which increases with the length-scale, because the model gets less complex with growing

log p(t)-scale
$$= \log \left[(2\pi)^{-n/2} |K_y|^{-1/2} \exp\left(-\frac{1}{2} \mathbf{y}^\top K_y^{-1} \mathbf{y} \right) \right]$$

• a normalization constant $-\frac{n}{2} \log 2\pi$
 $= -\frac{1}{2} \mathbf{y}^\top K_y^{-1} \mathbf{y} - \frac{1}{2} \log |K_y| - \frac{n}{2} \log 2\pi$.

with $K_y := K + \sigma^2 I$ and θ denoting the hyperparameters (the parameters of the covariance function).

TRAINING A GP:\EXAMPLEUM LIKELIHOOD

To visualize this, we consider a lzero mean Gaussian process with, squared exponential kernel becomes less flexible as the length-scale increases:

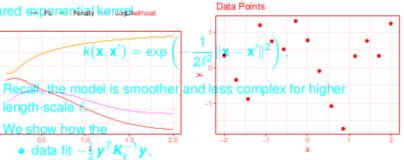
- the data fit $-\frac{1}{k}(\vec{x}, \vec{x}')^1 \neq \exp\left(h + \frac{1}{2\ell^2} d|x d|x'|\right)^2$ se if the length scale increases
- Recall the model is smoother and less complex for higher length-scale faction only and which increases with the
- Weishow how the use the model gets less complex with growing length data fit $-\frac{1}{2}y^T K_v^{-1} y$,
- a northe complexity penalty $\frac{n}{2}$ 4 $\log |K_v|$, and
 - the overall value of the marginal likelihood $\log p(\mathbf{y} \mid \mathbf{X}, \theta)$ behave for increasing value of ℓ .

To visualize this, we consider a zero-mean Gaussian process with

squared exprenential keraphonou

• data fit $-\frac{1}{2} \mathbf{y}^T \mathbf{K}_{v}^{-1} \mathbf{y}$.

-s length-scale We show how the

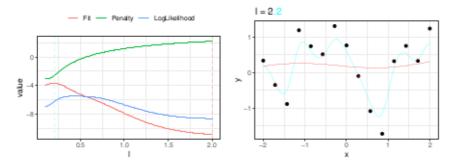


• the complexity penalty $-\frac{1}{2} \log |K_{\nu}|$, and

The left plot shows how values of the data fit 12 K K 14 the complexity penalty $-\frac{1}{2}\log|K_y|$ (high value means less penalization) and the overall marginal likelihood $\log p(y \mid X, \theta)$ behave for increasing values of ℓ .

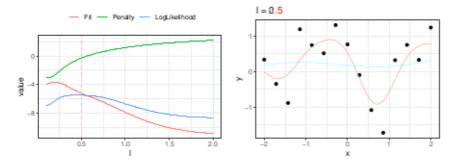


The left plot shows how values of the data fit $=\frac{1}{2} \mathbf{y}^T \mathbf{K}_y^{-1} \mathbf{y}$, the complexity penalty $-\frac{1}{2} \log |\mathbf{K}_y|$ (high value means less penalization) and the overall marginal likelihood $\log p(\mathbf{y} \mid \mathbf{X}, \theta)$ behave for increasing values of ℓ . A small ℓ results in a good fit, but a high complexity penalty (low $-\frac{1}{2} \log |\mathbf{K}_y|$).



The left plot shows how values of the data fit $-\frac{1}{2} \mathbf{y}^T \mathbf{K}_y^{-1} \mathbf{y}$, the complexity penalty $-\frac{1}{2} \log |\mathbf{K}_y|$ (high value means less penalization) and the overall marginal likelihood $\log p(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta})$ behave for increasing values of ℓ .

A target ℓ results in a poorifit, but a high complexity penalty (low $-\frac{1}{2}\log|K_y|$).



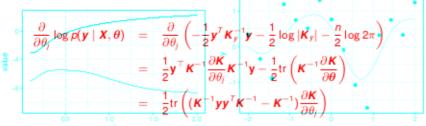
The left plot shows how values of the data fit $-\frac{1}{2} \mathbf{y}^T \mathbf{K}_y^{-1} \mathbf{y}$, the complexity penalty $-\frac{1}{2} \log |\mathbf{K}_y|$ (high value means less penalization) and the overall marginal likelihood $\log p(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta})$ behave for increasing values of ℓ .

The maximizer of the log-likelihood, $\ell=0.5$, balances complexity and fit.

TRAINING A GP VIA MAXIMUM LIKELIHOOD

To set the hyperparameters by maximizing the marginal likelihood, we

seek the partial derivatives w.r.t. the hyperparameters



using
$$\frac{\partial}{\partial \theta_j} \mathbf{K}^{-1} = -\mathbf{K}^{-1} \frac{\partial \mathbf{K}}{\partial \theta_j} \mathbf{K}^{-1}$$
 and $\frac{\partial}{\partial \theta} \log |\mathbf{K}| = \operatorname{tr} \left(\mathbf{K}^{-1} \frac{\partial \mathbf{K}}{\partial \theta} \right)$.

The left plot shows how values of the data fit $-\frac{1}{2} \mathbf{y}^T \mathbf{K}_y^{-1} \mathbf{y}$, the complexity penalty $-\frac{1}{2} \log |\mathbf{K}_y|$ (high value means less penalization) and the overall marginal likelihood $\log p(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta})$ behave for increasing values of ℓ .

The maximizer of the log-likelihood, $\ell=0.5$, balances complexity and fit.

TRAINING A GP VIA MAXIMUM LIKELIHOOD /2

To eThe complexity and the runtime of training a Gaussian process is seek dominated by the computational task of inverting *K* - or let's rather say for decomposing it.

- Standard methods require $O(h_y^3)$ time (I) for this $\frac{n}{2} \log 2\pi$
- Once K⁻¹ or rather the decomposition -is known, the computation of the partial derivatives requires only O(n²) time per hyperparameter.
- Thus, the computational overhead of computing derivatives is small, so using a gradient based optimizer is advantageous. using $\frac{\partial R}{\partial \theta} K = -K = \frac{\partial R}{\partial \theta} K$ and $\frac{\partial R}{\partial \theta} \log |K| = \operatorname{tr}(K = \frac{\partial R}{\partial \theta})$.

TRAINING A GP VIA MAXIMUM LIKELIHOOD /3

Workarounds to make GP estimation deasible for big data include:ss is

- dsing kernels that yield sparse K. cheaper to invert. or let's rather
- subsampling the data to estimate θ : $\mathcal{O}(m^3)$ for subset of size m.
- Standard methods require (1) time (1) for this combining estimates on different subsets of size m:
- Bayesian committee, O(hm²) position -is known, the
- using only a representative subset ("inducing points") of m training data X_m:
- Nystrom approximation K > K of Kenk uting derivatives is $\mathcal{O}(nmk + m^3)$ for a rank k-approximate inverse of Kengous.
- exploiting structure in K induced by the kernel: exact solutions but complicated maths, not applicable for all kernels.
- ... this is still an active area of research.

TRAINING A GP VIA MAXIMUM LIKELIHOOD

Workarounds to make GP estimation feasible for big data include:

- using kernels that yield sparse K: cheaper to invert.
- subsampling the data to estimate θ : $\mathcal{O}(m^3)$ for subset of size m.
- combining estimates on different subsets of size m: Bayesian committee, $\mathcal{O}(nm^2)$.
- using low-rank approximations of K by using only a representative subset ("inducing points") of m training data X_m :

 Nyström approximation $K \approx K_{nm}K_{mm}^-K_{mn}$, $\mathcal{O}(nmk + m^3)$ for a rank-k-approximate inverse of K_{mm} .
- exploiting structure in K induced by the kernel: exact solutions but complicated maths, not applicable for all kernels.
- ... this is still an active area of research.