I TRAINING OF A GAUSSIAN PROCESS
| Irftr8 BRI 'gnega:r Aftgean process O 0O X

one simply needsrg perform m rix com

| Gabneiai S Wsnac e 3503 thifihe covariance functions is
| fully given, including all of its hyperparameters. x x

@ Avery nice property of GPs 1°fHAL We 84 fearn the numerical
hyperparameters of a selected %oVarlancé funchoh dn‘ecﬂy during
GP training.
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TRAINING A'GP VIA MAXIMUM LIKELIHOOD
Lep usassa®®redictions for a regression task by a Gaussian process O O x

ne simply needs to perform matrix computations
y =f(x) +¢ e ~N(0,0%), x O
wher8if(x)r 4 §P(0oki{xuxX }@)assume that the covariance functions is

ully given, including all of its hyperparameters x x

Observmgy ~ N (0. K + ¢2l), the marginal Iog -likelihood (or
eviglenca)snice property of GPs is that we can le he numerical
hyperparan rs of a gelected covariance funcjiondirectly dyring
logp{ydXi@) = log [(2.~r)"""2 K,| " exp (—EyTKy1y)}
1+ 4 1 n
= —Ey K, y—EIog Kyl — Elog27r.

with K, := K + o?l and 6 denoting the hyperparameters (the
parameters of the covariance function).
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TRAINING A GP VIA MAXIMUM LIKELIHOOD /2

Thethreesterms of the marginal likelihood have interpretable roles,

considering that the model becomes Iess flexible as the length-scale

increases: ‘ f(x

.1 the data fit wéyTK;‘y,mhich tends to decrease if the length
scale increases

Ot thercomplexify peralty 5 logd K4 which deperids on the

sideeovariance function only and which increases with the

length-scale, because the model gets less complex with growing

!3“%‘”%@3"3 g [(2 K | —=y K, ¥
@ anormalization constant — 3 log 27 N
-y K, 'y - K — 2
ith K K I and & denoting the | rat ?
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TRAINING A GP: EXAMPLE U1/l LIKELIHOOD

Towisualize this, wel consider a/Zéro:mean Gaussian process with

squared iexponentialkermglbecomes less flexible as the length-scale

Increases
@ the data fi k(x.hi’) = exp (HE}E'HX”*IIHZ)W he lengtl
scale increase: '
® Recall;the modelis)smoather and less complex for higher
lengthsealduliction only and which increases with the

o WeshowHowtha:use the model gets less complex with growing

“redatatit —1y'K, 'y,
° o e thelcomplexity penalty —3deg (K, |, and
e the overall value of the marginal likelihood log p(y | X, 8)
behave for increasing value of /.

__ [
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TRAINING A GP: EXAMPLE /2

) visualize this, we consider a zero-mean Gaussian process witl

uared exponerntia) ke ridghinc Deta Peints
XX ": S |& X[~ . .
.| L - . X X
2 9| Recatinthe model i herjand | mpl r high
length-scale T - N i .
° how how the ~—~——— 7 , -
e data fi VL y K y . . J.
o the complexity penalty — = log |[K, |, and

The left plot shows how values.of the data fit ~ z k| Kiy . the somplexity pepalty

Iog IF, (high value means Iess‘Penallzahon) and the overall marginal likelihood
log p(y | X. 0) behave for mcreasmg values of £.

__ [
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TRAINING A GP: EXAMPLE /3
O0OX

[=0.2
— Ft — Pondty — Loglikeihood

SVARSL X X

The left plot shows how values of the data fit %y‘YK,. ’y, the complexity penalty
3 !oglg(,.[ (high value means less penalization) and the overall marginal likelihood

log oy | X.8)behave for increasing values of /.
| X.0 f f
A'small ¢ results in agood fit, buta high complexity penalty (low —3 log|K|).
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TRAINING A GP: EXAMPLE /4
O0OX

— Ft — Pondty — Loglikeihcad

vaue
IS
/
L

The left plot shows how values of the data fit — %yTK,. 'y, the complexity penalty
— 1 log| K| ((high value means less penalization) and the overall marginal likelihood
log p(y | X.0) behave for increasing values of .

A large £ results in 2 poorfit!
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TRAINING A GP: EXAMPLE /5
O0OX

— Ft — Pondty — Loglikeihcad
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The left plot shows how values of the data fit — %yTK,. 'y, the complexity penalty

]
- ;log| K,/ (high value means less penalization) and the overall marginal likelihood
log p(y | X.0) behave for increasing values of £.
Themaximizerofthedog+likelihood, £ = 0.5, balances complexity and fit.
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TRAINING A GP:ViA MAXIMUM LIKELIHOOD

To set the hyperparameters by maximizing the marginal likelihood, we
seek the partial-derivatives w.rt. the hyperparameters

8 o~ (Vg 1. "5 n )
S g By 1 X.0) = o (~3K'y - FloglK) E‘Iogzx)
1 - 0K Ly 1 ,UK)
- Ly k'Zk (k'S
2y © 35" Y2 r( 6
- 1_ 1 T 1 l("K>
— 2tr ((K yy' K K )_UIJ,.. .

H a -1 __ —-10K -1 a . —10K"
using 77K~ = —K 50K " and g log |K| =tr (K~ "55).

[ V V y K, )
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TRAINING A GP VIA MAXIMUM LIKELIHOOD /2

TowcThe-complexity:anddhelruntime of training a-:Gaussian process is
«dominated by the camputational task of inverting K - or let's rather
say for decomposing it.

o Standard methods require O(#7}) time () for this. 7|
Once K~ - or rather the decomposmon -is known, the

computation of the partial dérivatives requires bnly&)(nz) time per
hyperparameter.

K

Thus, the computational verhedd of computing derivatives is
small, so using a gradient based optimizer is advantageous.
—K 9\ gde ar ﬁp‘, K rK —g
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m TRAINING A GP VIA MAXIMUM LIKELIHOOD /3

I Workarounds to-make GP estimation déasible for big: datainclude:s« |
o using kernels that yield'sparse K “ehéaperto imvert. O 1o1s raihel
siibsampling the data to estimate 6: O(m?) for subset of size m.

‘ci;o‘n[\bi‘nﬁn‘d'esfinia‘te[s on differént sﬂbsets of $i26'm:
Bayesian committee. O(nmz)' sition -is known, tl

smg low rank approxnmatloﬁs of Kby uswl\g oAl ‘2 representafive
subset ( mducmg points") of mtraining data Xp:
® Nystrom approximation’ K =K, Koo Km0 dervatives s

O Amk - m? Yfera tankkapproximate iverse of K 01

@ exploiting structure in K induced by the kernel: exact solutions but
complicated maths, not applicable for all kernels.

® 00

.. this is still an active area of research.
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I TRAINING A GP VIA MAXIMUM LIKELIHOOD

I Workarounds to make GP estimation feasible for big data include:
@ using kernels that yield sparse K: cheaper to invert.
@ subsampling the data to estimate 6: O(m?®) for subset of size m.

@ combining estimates on different subsets of size m:
Bayesian committee, O(nm?).

@ using low-rank approximations of K by using only a representative
subset (“inducing points”) of mtraining data X:
Nystrom approximation K ~ Knn K Kin,
O(nmk + m?) for a rank-k-approximate inverse of K.

@ exploiting structure in K induced by the kernel: exact solutions but
complicated maths, not applicable for all kernels.

.. this is still an active area of research.
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