GAUSSIAN POSTERIOR PROCESS AND
PREDICTION

Introduction to Machine Learning
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I GAUSSIAN POSTERIOR PROCESS AND
I PREDICTION

O 0X

Gaussian-Posterior Process and Prediction X X
@ However, most of the time, we are not interested in drawing

random functions from the prior. Instead, we usually like to use the

knowledge provided by the training data to predict values of f

@ Inwhat follows, we will investigate how to update the Gaussian

process prior (— posterior process) and how to make predictions
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POSTERIOR PROCESS

@ Let us now distinguish between observed training inputs, also O O X
denote by a design matrix X, and the corresponding observed

values X O
Gaussian Posterifi{(PPdcesf&dhll Prediction X X

and one single unobserved test point x, with f, = f(x. ).

f.="1(x,)
@ Assuming a zero-mean GP prior GP (0, k(x, x’)) we know

1 fn[K K
el &)

Here, K = (k (x(’).xU)))’.J, k, = [k (x.,x(M) .k (x., x(™)
and k.. = k(x,.x,).

1
i
i
i
B @ We now want to infer the distribution of £, |x. X, f.
i
i
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POSTERIOR PROCESS /2

@ Given that fis observed,we.can.apply the general rulefor, - O O x
condition () of Gaussian random variables.and ebtainthe.,

following formula: | x O

f fx\'/| fx'
and ol f«{l,l:ﬁldi?&&hg(ﬂzlﬁgﬂﬁdm « kKT k. ). (x X x

o WV ‘1 want to jnfer {f listribytion of £, x,. X. f o )
® As the posterior is a Gaussian, the maximum a-posteriori estimate,
i.e. the mode of the posterior distribution, is k'K 'f.

@ Assuming a zero-mean GP prior G'P (0, k(x, x")) we know

| |
o
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POSTERIOR PROCESS /3

(*)aGeneral tule for conditionlof Gaussian randomvamables

sonditiol of Gaussian random variable 1 obtain the
If the m'dimensionalGaussian vector z ~ N (;r. Z) can be partitioned
with z = (24, z2) where 24 is my-dimensional and 23 is
my-dimensional, and:

X.. X, f Vik, K f. k k.K k.)
Ty g
@ As the posteri r‘“ ”2) ;! (ﬂé{-[éé' a-p riori it
i.e. the mode of the posterior distribution, is k., K™ ' f

then the conditioned distribution of z> | z; = ais a multivariate normal

N (1!2 + 2212;11 (@— p4), Xa2 — 2212;11212)

__ [
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i GPPREDICTION:TWO POINTS
| Letwswvisualize thisdoy aisimple @xample: random variables:
| @ Assume we observed a single training point x = —0.5, and want to
l [ themake acpredictionata testypoint x, =.0.5,. 2 ) can be partitioned
Wie Undef a Zeromean’GP with k(3¢ X' == exp (23 [|x 2ox||2) we @
@' compute the cov-matrix:
P 2 [ 061
[f.J e (0‘ {0.61 1 D
then the conditioned distnbution ot 2z, * 2 ais @ multivariate normal
@ Assume that we observe the point f(x) = 1.
@ We computethe posteriordistributionz — 221 2. 2
} folxe,xf ~ N(kIK'f k.- kIK"k.)
] ~ N(0.61-1-1,1-0.61-1-0.61)
B ~ N(0.61,0.6279)
| @ The MAP-estimate for x, is f(x,) = 0.61, and the uncertainty
| estimate is 0.6279.
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GP PREDICTION: TWO POINTS

Showrs is' the bivanidte normal density, and-the[respective marginals.

dersgy

Macgioal distribution of 1{x7)

Posténor prodess

Beyarnate Normal Density

o

Marginal distributon of f(x)

dersity
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GP PREDICTION: TWO POINTS

. Assume:we observed f{x) == 1 forthe training pointx! =« #0:5:

Marginal distribution of f(x*) Bivanate Normal Density

L3 |
densty
= B B 3 &
=1
)
\
]
#x)

Posterior process Marginal distributon of f(x)

]
fix)
o
5
3
=]
B
3
densty
'
'
,
|
]

4 troduction to Machine Lening ~ 8 /28



GP PREDICTION: TWO POINTS

We conditionthe Gaussian onlf(x) == 1.

Marginal distribution of f(x*) Bivanate Normal Density
4
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GP PREDICTION: TWO POINTS

We compute the posterondistribution of /(x, ) given that f(x) = 1.

densty

;
25 .
4
2
‘
.t
Q00

Marginal distribution of f(x*)

L

4 2 0 P 4
#{x*)

Posterior process

B densty
e - e

Bivariate Normal Density

&

4 4

‘>‘!|

Marginal distributon of f(x)
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GP PREDICTION: TWO POINTS

. Npassible predictor:fon £ atx] isithe MAP of the posterior distribution.

Marginal distribution of f(x*) Bivanate Normal Density

A 2 0 2 i

Hx") 1)

Posterior process Marginal distributon of f(x)

I
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X

fanngpont
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GP PREDICTION: TWO POINTS

We cando this fordifferent value s x. |/and show thesrespectiveimean (grey line) and

standard deviations (grey area is mean +2- posterior standard deviation).

Marginal distribution of (x*) Bivariate Normal Ders 1y
& .
8 4
/
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|
> ety ‘ ) i
Posterior process Marginal distributon of f(x)
= e === 175
B ol = St 8 obpriagd
' N I
o
=
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POSTERIOR PROCESSFPOINTS

e Wecan 'generalizethe formila forthe posterior processfor
multiple unobserved test points!

) ot (K]

@ Under a zero-mean Gaussian process, we have

AR

with K. = (k (x"‘),x‘,‘)) )u‘ K.. = (k (x‘,",x‘,”)) -

| |
o
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POSTERIOR PROCESS /2

@ Similartothe single test point.situation, e get the pasteriar O 0O X
distribution,,we-exploit.the general rule of conditioning for

Gaussians: x o

f £l ] f(x
fo| X, X f ~ N(KTK7'f K. — KITK'K.).
@ Under a zero-mean Gaussian process, we hav Xx
@ This formula enables us to talk about correlations among different
test points and sample functiona from thé‘posterior process.
f \ K K

with K [k (x'". %) ] K [k (xi7. x

__ I Froduction to Machine Learning ~ 14 /28



POSTERIOR PROCESS

@ Similar to the single test point situation, to get the posterior O O X

distribution, we exploit the general rule of conditioning for

Gaussians: x O
Properties of a Gaussian Process % %

@ This formula enables us to talk about correlations among different

test points an d sam [J\ e functions from the posterior process

__ [
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GP AS INTERPOLATOR

The “prediction” for a training point x() is the exact function value
f (x(f))
fIX f~N(KK'f,K—-K'K'K)=N(f0).

Progerties of a Gaussian Process
Thus, a Gaussian process is a function interpolator.

?(x)

X

After cbserving the raining points (red ), the posterior process (black) nterpolates the raining points
Kpex) B Masern with ru = 25, the defwuk for Dlceriging:km)
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GP AS A'SPAFIALMODEL

@ The correlation among two outputs depends ondistance of thg corres nding
The ‘REBAHGMYs i3 {81) 64 RSIaH AwalBABEKBIEFL [Unction value O 0OX
(X! k(xx)—exp( llx x’2)
L Hencefck;gefdata'por ithfhiér w%éﬁlmnédty k(;t k") Qﬁterlm() more x O
|1) (m)
Thus 388 oA prddtione: Ko ’.‘nterrgoﬂ A oKX D)),

alor | x x

Example: Posterior mean of a GP thatwas fitted with.the Gaussian covariance
kernelwith | = 1.
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GP AS A SPATIAL MODEL /2

@ T rrelation among tw tput el ‘ tar f il rrespondir
@ Posterior.uncertainty increases if the new data points are far from O O x
the design points. -

@ The uncertainty. is minimal at.the design paints, since the posterior x O
variance is.zero at these points. 1 4 » (x.
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I GP AS A SPATIAL MODEL

@ Posterior uncertainty increases if the new data points are far from
the design points.

@ The uncertainty is minimal at the design points, since the posterior

variance is Nmsywusslan Process

post. viri wnos
@€
- &
X

Example (continued): Posterior variance.
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NOISY GAUSSIAN PROCESS

@ So far, we implicitly assumed that we had access to the true
function value f(x).
@ For the squared exponential kernel, for example, we have

Noisy Gaussian Process
Cov (f(x(")). f(x("))S =1.

® As a result, the posterior Gaussian process is an interpolator:

?(x)

X
After observing the raining points fed), the posterior process (black) Interp olates the raining pores
(Kxx) IsMatem with ru = 25, the defa for Dicerigng: Jm)

| |
o
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NOISY GAUSSIAN PROCESS /2

inreality..howeyvern, this.is often not the case. ) the tri O O x
o Weoften/ahly have access to a noisy version of the true function

o value uat xponential kernel, for example, we hay x O

y =f(x) +ee~N(0,0%).

-

Let us still assume that 'f(x) Is @ Galissian process. x x
Thenr,

oe

ult, the posterior n pro is an interpol
Cov(y‘“ yw) ~Cov( ( 44‘) ) f(x““') T (4;‘;)

o (1 (s).1(4)) 261 (1 {s0) ) s oo (.4

K (Xl ".X“) % (72(5,.

o2 is called nugget.

s |} | | ;BN |
[
i

| |
o
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NOISY GAUSSIAN PROCESS /3

® Letws nowderive thepredictive distribution for the case of noisy O O x
observations,

@ Theprior distribution of y, assuming that f is modeled by a x O
Gaussian process is then

with

a3 ;B |} | NN |

<

[
<
=3
04

-

3
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}

Q

N

3
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NOISY GAUSSIAN PROCESS /4

@ We distinguish iagairchetween

e“pbserved training points X, y, and
e unobservied test inputsXu with; uhobséervedvalues f <

and get
v s [K+0% K,
el <l
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NOISY GAUSSIAN PROCESS /5

@ Similarly to/the noise-free case, we condition according to the rule
of conditioning for Gaussians 1o get the posterior distribution for
thestest @utputs f it Xoiuts X with unobserved values f

al
Yy xvid o A8 L0, K
fo 3 X X0y AN [ mgest. Koger)-
with

Myost = K/ (K+o2-1) 'y
Kposl = K.. - KI (K71 +02. I) K..

@ This converts back to the noise-free formula if o° = 0.
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NOISY GAUSSIAN PROCESS /s

@ ThelnoisyGaussian process:is not anintérpolatorahy moré.c 1|

o Allarger nigget term leads'to & wider *bandaround the observed
training points> © 1 X

® The nugget term is estimated during training.
' f. X..X,y \Viim K

i)

is converts back to the noise-freesformula if o
X

Afer cbserving the training points red), we have a nugget-band around the cberved ponts
Ki{xx') & the squared exponert )
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Decision Theory for Gaussian Processes
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RISK MINIMIZATION FOR GAUSSIAN PROCESSES

In machine learning, we learned about risk minimization. We usually
choose a loss function and minimize the empirical risk x O

Decision Theory for Gaussian Processes

Remo(f) := Y L(y1.1 (x7)) X X

i=1

as an approximation to the theoretical risk

R() = By L(y. 100)] = [ L(y.1(x))dBs

@ How does the theory of Gaussian processes fit into this theory?

@ What if we want to make a prediction which is optimal w.r.t. a
certain loss function?
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RISK MINIMIZATION FOR GAUSSIAN PROCESSES

/2
o The théory of Gaussian process give's us a posterior distribution
p(y | D)

o If we now wantto-make a prediction at'a tést point x., we
approximate the theoretical risk in a different way, by using the
posterior distribution:

Ry . [0y ki s DY
® The optimal predicitory w.rd'the foss function-is then:

¥a|x. = argminR(y. | x.).
Yo
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RISK MINIMIZATION FOR GAUSSIAN PROCESSES

@ The theory of Gaussian process gives us a posterior distribution
p(y | D)

@ If we now want to make a prediction at a test point x., we
approximate the theoretical risk in a different way, by using the
posterior distribution:

Ry | %)= [ Loy )p(7. | %, D).
@ The optimal prediciton w.r.t the loss function is then:

y.|x. = argmin, R(y. | x.).
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