THE ROLE OF MEAN FUNCTIONS
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zero-mean function
m(x) =0
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of the posterior process is not confined to be zero

f.1X. X, f= N(KIK'f, K. — KTKT'K.).
< P Learning goals
9 Yetthere are several reasons why one:might wish-ta explicitly
model a mean function, includinginterprétability; corvenience of

expressing prior informations, ... """

@ When assuming a non-zero mean GP prior GP (m(x), k (x,x"))
with mean m(x), the predictive mean becomes

m(X.) + KK} (y — m(X))

while the predictive variance remains unchanged.
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@ Gaussian processes with non-zero.mean Gaussian process priors
arealso called. Gapssnan processes with trend.

@ Note that
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Functions drawn from a Gaussian process prior
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lile the predic /ariance remains unchanged
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Paosterior process after 1 goservation
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_| Posterior process after 2 cbservations O O x
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Posterior process after 3 observations
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Posterior process after 4 observations
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In practice’it canoften Be difficult 1o “Specify a fixed mean function

In many cases it may be more convenient to specify a fewfixed
basis functions, whose coefficients, /3, are to be inferred from the
data =

Consider N

g(x) = b(x) "B + f(x), where f(x) ~ GP (0, k(x, X))

This formulation expresses that the data is close to a global linear
model with the residuals being modelled by a GP.

For the estimation of g{x} please refer to Rasmussen. Gaussian
Processes for Machine Learning, 2006
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@ In practice it can often be difficult to specify a fixed mean function

@ In many cases it may be more convenient to specify a few fixed
basis functions, whose coefficients, /3, are to be inferred from the
data
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g(x) = b(x)" 3 + f(x), where f(x) ~ GP (0, k(x, X))

@ This formulation expresses that the data is close to a global linear
model with the residuals being modelled by a GP.
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Processes for Machine Learning, 2006
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