COVARIANCE FUNCTION OF A GP

The marginalization property of the Gaussian process implies that for any finite set of input values, the corresponding vector of function values is Gaussian:

Covariance Functions for GPs
$$f = \begin{bmatrix} f(\mathbf{x}^{(1)}), ..., f(\mathbf{x}^{(n)}) \end{bmatrix} \sim \mathcal{N}(\mathbf{m}, \mathbf{K}),$$

- The covariance matrix K is constructed based on the chosen inputs {x⁽¹⁾, ..., x⁽ⁿ⁾}.
 Learning goals
- Entry K_{ii} is computed by $k(\mathbf{x}^{(i)},\mathbf{x}^{(i)})$ viance functions encode key
- Technically, for every choice of inputs {x⁽¹⁾, ..., x⁽ⁿ⁾}, K needs to be positive semi-definite in order to be a valid covariance matrix.
- A function k(...) satisfying this property is called **positive definite**.

COVARIANCE FUNCTION OF A GP /2

The Recall the purpose of the dovariance function is to control to for any fwhich degree the following is fulfilled ading vector of function values is Gaussian:

If two points $\mathbf{x}^{(i)}$, $\mathbf{x}^{(i)}$ are close in \mathcal{X} -space, their function values $f(\mathbf{x}^{(i)})$, $f(\mathbf{x}^{(i)})$ should be close (**correlated**!) in \mathcal{Y} -space.

- The covariance matrix **K** is constructed based on the chosen
- Closeness of two points $\mathbf{x}^{(i)}$, $\mathbf{x}^{(j)}$ in input space \mathcal{X} is measured in
- terms of as ⊕ox(θ)utex(θ) κ (x(i), x(i)).
- Technically, for **every** choice of inputs $\{x^{(1)}, ..., x^{(n)}\}$, K needs to be positive semi-definite in order to be a valid covariance matrix.
- A function k(...) satisfying this property is called **positive definite**.

COVARIANCE FUNCTION OF A GP: EXAMPLE

- Consider two points $\mathbf{x}^{(1)} = 3$ and $\mathbf{x}^{(2)} = 2.5$.
- If you want to know how correlated their function values are n compute their correlation should be close (correlated!) in

COVARIANCE FUNCTION OF A GP: EXAMPLE

- Assume we observed a value $y^{(1)} = (-0.8)$ the value of $y^{(2)}$ should
- be close under the assumption of the above Gaussian process.
- If you want to know how correlated their function values are,

COVARIANCE FUNCTION OF A GP: EXAMPLE

- Let us compare another point $\mathbf{x}^{(3)}$ to the point $\mathbf{x}^{(4)}$ ue of $\mathbf{y}^{(2)}$ should
- We again compute their correlation above Gaussian process.
- Their function values are not very much correlated; y⁽¹⁾ and y⁽³⁾ might be far away from each other

COVARIANCE FUNCTIONS F A GP: EXAMPLE

There are three types of commonly used covariance functions:

- k(x) is called stationary if it is as a function of d = x x', we
- write $k(\mathbf{d})$. Their function values are not very much correlated; $y^{(1)}$ and $y^{(3)}$. Stationarity is invariance to translations in the input space: $k(\mathbf{x}, \mathbf{x} + \mathbf{d}) = k(\mathbf{0}, \mathbf{d})$
- k(.,c) is called isotropic if it is a function of r = ||x x'||, we write k(r).

 Isotropy is invariance to rotations of the input space and implies
- k(...) is a dot product covariance function if k is a function of x^Tx'

stationarity.

COMMONLY USED COVARIANCE FUNCTIONS

The reare three types of commonly used covariance functions:

- k(.,.) constant stationary if it is as a function of d = x x', we write k(d).
 - Stationalinear invariance to translation α_0^2 in the \dot{x}^0 put space:

$$k(\mathbf{x}, \mathbf{x} + \mathbf{d}) = k(\mathbf{0}, \mathbf{d})$$

• k(.,.) is called isotropic if it is a function of r = ||x - x'||, we write

- squared exponential Isotropy is invariance to rotations of the input space and implies
- stationarity. Matern k(.,.) is a dot product exponential $\begin{array}{c} \frac{1}{2^{\nu}\Gamma(\nu)} \left(\frac{\sqrt{2\nu}}{\ell} \| \mathbf{x} \mathbf{x}' \| \right)^{\nu} \mathcal{K}_{\nu} \left(\frac{\sqrt{2\nu}}{\ell} \| \mathbf{x} \mathbf{x}' \| \right) \\ \text{exponential} \end{array}$ exp $\left(-\frac{\| \mathbf{x} \mathbf{x}' \|}{\ell} \right)$

 $K_{\nu}(\cdot)$ is the modified Bessel function of the second kind.

COMMONLY USED COVARIANCE FUNCTIONS /2

- Kernel (left), Polynomial Kernel (middle), and a Matérn Kernel (right, $\ell=1$).
- The length-scale hyperparameter determines the "wiggliness" of the function.
- is the modified Bessel function of the second kind. For Matern, the ν parameter determines how differentiable the process is.

SQUARED EXPONENTIAL COVARIANCE IONS FUNCTION

The squared exponential function is one of the most commonly used covariance functions.

- It depends merely on the distance $r = \|\mathbf{x} \mathbf{x}'\| \to \text{isotropic}$ and stationary.
- Infinitely differentiable ⇒ sometimes deemed unrealistic formential kernel lieft polynomial kernel modeling most of the physical processes.
- The length-scale hyperparameter determines the "wiggliness" of the function.
- For Matérn, the ν parameter determines how differentiable the process is.

CHARACTERISTIC LENGTH-SCALENCE FUNCTION

The squared exponential function is one of the most covariance functions: $(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2\ell^2}\|\mathbf{x} - \mathbf{x}'\|^2\right)$

 ℓ is called **characteristic length-scale** Loosely speaking, the characteristic length-scale describes how far you need to move in input space for the function values to become uncorrelated. Higher ℓ induces smoother functions, lower ℓ induces more wiggly functions.

CHARACTERISTIC LENGTH-SCALE / 2

For $p \ge 2$ dimensions, the squared exponential can be parameterized:

$$k(\mathbf{x},\mathbf{x}') = \exp\left(-\frac{1}{2\ell^2}\|\mathbf{x} - \mathbf{x}'\|^2\right)$$

$$k(\mathbf{x},\mathbf{x}') = \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{x}')^\top M(\mathbf{x} - \mathbf{x}')\right)$$

$$\ell \text{ is called characteristic length}^2 \text{scale. Loosely speaking, the}$$

Possible choices for the matrix whosh had far you need to move in input space for the function values to become uncorrelated. Higher ℓ induces smoother functions, lower inautoperations, lower inautoperations.

where ℓ is a p-vector of positive values and Γ is a $p \times k$ matrix.

The 2nd (and most important) case can also be written as

$$k(\mathbf{d}) = \exp\left(-\frac{1}{2}\sum_{j=1}^{p} \frac{d_j^2}{l_j^2}\right)$$

CHARACTERISTIC LENGTH-SCALE / 3

What is the benefit of having an individual hyperparameter ℓ_i for each dimension, the squared exponential can be parameterized:

• The ℓ_1 , . $k(\mathbf{z}\ell_p)$ hyperparameters play the role of characteristic length-scales.

Possible choices for the matrix M include

- Loosely speaking, \(\ell_i \) describes how far you need to move along axis \(i \) in input space for the function values to be uncorrelated.
- wher Such a covariance function implements automatic relevance determination (ARD), since the inverse of the length-scale ℓ_i . The determines the relevancy of input feature, i to the regression.
 - If \(\ell_i \) is very large, the covariance will become almost independent
 of that input, effectively removing it from inference.
 - If the features are on different scales, the data can be automatically **rescaled** by estimating ℓ_1, \ldots, ℓ_p

CHARACTERISTIC LENGTH-SCALE / 4

What is the benefit of having an individual hyperparameter ℓ_i for each dimension?

- The home hyperparameters play the role of characteristic length-scales.
- Loosely speaking ℓ_i describes how far you need to move along axis i in input space for the function values to be uncorrelated.

For the first plot, we have chosen M = 1: the function varies the same in all directions. The second plot is for $M = \text{diag}(\ell)^{-1}$ and $\ell = (1,3)$: The function varies less rapidly as a function of x_2 than x_1 as the length-scale for x_1 is less. In the third plot $M = \Gamma \Gamma$ diag $(\ell)^{-2}$ for $\Gamma = (1,1,1)$ and $\ell = (6,6)$ remember Γ gives the direction of the most rapid variation. (Image from Rasmussen & Williams, 2006)

• If the features are on different scales, the data can be automatically **rescaled** by estimating ℓ_1, \ldots, ℓ_p

CHARACTERISTIC LENGTH-SCALE

For the first plot, we have chosen M = I: the function varies the same in all directions. The second plot is for $M = \operatorname{diag}(\ell)^{-2}$ and $\ell = (1,3)$: The function varies less rapidly as a function of x_2 than x_1 as the length-scale for x_1 is less. In the third plot $M = \Gamma\Gamma^T + \operatorname{diag}(\ell)^{-2}$ for $\Gamma = (1,-1)^T$ and $\ell = (6,6)^T$. Here Γ gives the direction of the most rapid variation. (Image from Rasmussen & Williams, 2006)