COVARIANCE FUNCTION OF A GP
rginalization p of the Gaussian process implies that for
IR TR TR RSB R BT runction

values is Gaussian:

Covariange Fup, tlon { GPs
f=r(x),0f(x m.K),
@ The covariance matrix K is constructed based on the chosen
inputs {XU_), £, x™1, Learning goals
@ Entry K; iscomputed by k (x{ib x{fh}iance functions encode key
@ Technically, for every choice of in:: uts{;(m )é(g")} K needs to
be pasitive semi-definite in order ﬁ)bté avalid covariance matrix.

® Afunction k(.,..) satisfying this property-is:called positive definite.
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COVARIANCE FUNCTION OF AGP /2

@ Recall /the purpose of the' covariance fungtioreis:torcontral to O O x
whichdegreethe following:is fulfilled:

If two points x(7), xU/) are close in X-space, their function
values £{x(")) xf(xV)) should be close. (¢orrelated!) in X X
YV-space.

o Cldseness of twé points x(7), xU) in input space A’ is measured in
terms 6f & <oxtf ol

K(x0), xm) = k(d)
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COVARIANCE FUNCTION OF A GP: EXAMPLE

8 Cer(x) be @GP Wit k(%, 50 2 &xp{ L jd2) with'd & 10 x. O 0O X
whicl ? )1lOp s fulfill
o Considertwo points x''' = 3 and x(®) = 2.5. X O
@ If youwant to know how correlated their function values are,,
compute their gorrelation! <1, 14 be close (correlated!) i
) Govariance Function x x

x—0f(d
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COVARIANCE FUNCTION OF A GP: EXAMPLE

o Assume weobserved avalue yl' = (—0.8¢the valtecof y\2) should
be close under the assumption of the above Gaussian process.

Covarlance Function
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k(d)
f(x)
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COVARIANCE FUNCTION OF A GP: EXAMPLE

o Letuscompare another point x(3) to the pointx(2)
o Weagdincompute their correlation

@ Their function values are not very much correlated; y{') and y(3)
might be far away fromeachother

Covariance Function

k(d)
f(x)
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COVARIANCE FUNCTIONS - A P EXAMPLE

There are three types.of commanly,used, covariance functions:

® (. o)is called stationary.if itis as,a function of d = x — x’, we

Qo ert%k‘(d) lues are no f
Staponanty ns mvanance‘to traqslatuons in the mput space
k(x.x + d) = k(0. d)

1
B ® k(..c)is calledisetropic if it is a function of r = ||x — x'||, we write
k(r) :
Isotropy is invariance to rotations of the input space and implies
stationarity.
®_k(...) is a dot product covariance function if k is a function of x ' x
-
_|
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i COMMONLY USEDCOVARIANCE FUNCTIONS

Tl

- ] T%, T1e T' T
" 'Nameé k(x, )
BoTlaRtSatongry 1Mt uncypa of d X
write k(d ¢
nalinear invariar nsl: wagwxrx’w
x.x+d 0.d 5 T g
pOIYnﬂmlal if it is a fu (\Uq o x) X — X
squaredexpon{c‘ar[mal )ﬁp( "fz"‘ ) -
O NAStérn ﬁ(-;‘ [x x']) K.,(-%T]x X'])
is a dot prodl varial unction4f k isa functior .
exponential exp (—"‘—""‘-)

K. (-) is the modified Bessel function of the second kind.
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COMMONLY USED COVARIANCE FUNCTIONS /2

Folynomial Covanance Fundicn

Matem Covanance Fundions

Squared Exponential Covarlance |
Lot Scd ) s 1 Dagres — 1 k(x. x') v— o
onstar
linear &b et
rfipﬂ 4;\, A‘“]I - E
& 0] ) i (olna 11!y il IR U Re e S i\"KM/’\\’Q
usrad M
squared exponent 4
; A A ; A A

) Random[fpmnpnﬁ qrawn f

Kernel (left), Polynomial Kg

fom Gaussian processes withxa Squared Exponen
rnel (middle), and a Matérn'Kernel (right, £ = 1).

tial

@ The length-scale hyperparameter determines the “wiggliness™ of the function.
‘ t find B function of ti nd ki
@ For Matérn.‘the 1~ parameter determines how differentiable the process is.

__ [
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SQUARED EXPONENTIAL COVARIANCE | O S
FUNCTION

The squared exponential function is one of the most commonly used
covariance functions.

NE [ — X7 [
I};.x)—exgﬁ— Y - AN A

\ il TR

Properties:

@ Itdepends merely on the distance r = |[x — x’|| — isotropic and
stationary.

[ Infmtte|y dtﬂerenuable 5 ‘sommefimes deemed unrealistic for

modehng most of thé physlcal processes
@ T

@ |

__ [
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CHARACTERISTICLENGTH-SCALE ' CE
FUNCTION

The squared exponential function {§ ong « 5 nonly used
sovariance functio k(x x) exp ( 212“x a x ” )

{ is called characteristic length-scale. Loosely speaking, the
characteristic length’scalé describies how faryou need to move in input
space for the function values to become uncorrelated. Higher / induces
Enmé?ﬁ.mctlons lower £ induces more wiggly functions.

@ ltde [wr ds mg r»T‘\v on the distance ¢ X — X isotropic and

@ Infinitely diffgla
modeling

7;'9"?4'
sical prock

%
5
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CHARACTERISTIC LENGTH-SCALE /2

For p = 2 dimensions, the squared exponential can be parameterized:

X, X —||X — X

k(x,x') = exp(—l(x—’f) x"‘/){) ,

I I characteristic lenth2sc¢als

Possiblé chisices for the fiatrix M irichide = /O  Move In inp

ir the function values to becol uncorrel igher £ indl
Ol LS. Iy diag(#)7 20" My rrTcliogiag(e) 2

where £ is a p-vector of positive values and ["isa p x k matrix.

The 2nd (and most important) case can also be written as

k(d) = exp (—% i%)

=11
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CHARACTERISTIC LENGTH-SCALE /3

What is the benefnt of havmg an mdlvndual hyperparameter £, for each
difhehs'on')” he square xponential can be paran rized

® The /4, . k4 hyperparameters play the'fole of eharacteristic

length-scales.
ible choices for the matrix M include

@ Loosely speaking, £; describes how far you need to move along
axis i injinput spage forthe function values ta be uncorrelated.

e Such a covariance function implements automatic relevance
determination (ARD), since the inverse of the length-scale £;

The determines the relevancy of inpul feature i 1o the regression.

@ If £;isvery large, the covariance will became almost independent
of that input, effectivély removing ft ﬁ'ommference

@ If the features are on different scales, the data can be
automatically rescaled by estimating /4, .. ., £y

|
o
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CHARACTERISTIC LENGTH-SCALE /4

What is the benefit of having an individual hyperparan

e i N ::[ o
® Thé [y, Py perpatametermglay t exgle of‘ ctétistic

length-sgales N .
g-‘ ‘v . 2 \ - 2 '

‘ = o T P Dy P
® Loosgly speaking \a../ i deggribeshow far yoynged-toamgye along
axis / in input space for the function values to be uncorrelated

dimension?

Fof the'first piot W Have éhoséH’M‘ "Fthe %H8f‘8%%h%?¥n‘é”§8me
in all HrECABRE THe second ot s for M- idg ) ""and #2U.3):
The fURGHON Varigs 1658 rapidly as' & functioh ‘of X; than ' asthe

length-scale fqr xi s Jess, In the third plot M= [T+ diag(£) 2 for.

= (1, 1—1)H and£= (6, fi)f7 Here I' gives t he direction of the most
rapid variation. (Image from Rasmussen & Williams, 2006)
@ Ifthe features are different scales, the data can be
automatically rescaled l;w estimating

| |
o
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CHARACTERISTIC LENGTH-SCALE

For the first plot, we have chosen M = [: the function varies the same
in all directions. The second plot is for M = diag(#) 2 and £ = (1,3):
The function varies less rapidly as a function of x, than x; as the
length-scale for x; is less. In the third plot M = I'T7 + diag(#¢) 2 for

= (1,—-1)" and £ = (6.6) . Here I' gives the direction of the most
rapid variation. (Image from Rasmussen & Williams, 2006)
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