REVIEW: THE BAYESIAN LINEAR MODEL
et D = {(x("), () .. (x("). y(")}! be atraining set of i.i.d.
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Let y = (™) and X € R"*PH be the design matrix where
the i-th row contains vector x(/).
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REVIEW: THE BAYESIAN LINEAR MODEL /2

Thelinear regression model is deéfined-asa training set of 1
rvations 1irom soi UNKNOWI ISUriputior
y=f(x)+e=0"x+¢

or on the data:

y = f(x(f)) ')—07 (")' W sorie {1,..., n}

We now assume (from a Baye_sran perspectlve) that also our parameter
vector @ is stochastic and follows a distribution. The observed values
y) differ from the functjon values f (x\”)) by some additive noise, which
is assumed to be i.i.d. Gaussian

) ~ \(0(7)
y | ! X sign matrix where tl
and mdependent of xand 6.
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REVIEW: THE BAYESIAN LINEAR MODEL /3

Letus assumeawe have prior-beliefscabout the parameter 6 that are O O x
represented in a prior distribution 8 ~ N(0, 721,).

Whengver data points are observed, we update the parameters’ prior

distribution according to Bayes' rule x x

lkaelihood ,  pnor

e e
ply|X, 0) q(6)

p(OX,y) =
posterigr e vyl
higinE)
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REVIEW: THE BAYESIAN LINEAR MODEL /4

The posteriordistributionnofthe parameter @ is-again normal distributed
(theGaussian family is'self«conjugate).’. (0. /)

Whenever data poirfl] ‘XAy'TV'JV-‘(U'TZ‘A‘i\“ley.‘Ar‘1‘)[ arameters' prior

W‘ItHHA‘ ;“:"0;2)("(*’_% %r; s’ rule
Remarks: (1) Please see the Deep Dive part for. the detailed derivation.

(2) The expectation ofv0 X, yis e;s%;r&m‘ g@lgxion of ridge regression.

(6 X y)
Note: If the posterior distribution. p(f | X.y) aré;ix;’itr)é‘sanme probability distribution
family as the prior g(@) w.r.t. a specific likelihood fanction p(y | X.8), they are called
conjugate distributions. The prior is then called a conjugate prior for the likelihood.
The Gaussian family is self-conjugate: Choosing a Gaussian prior for a Gaussian
Likelihood ensures that the posterior is Gaussian.
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REVIEW: THE BAYESIAN LINEAR MODEL /s
The posterior distribution of the parameter @ is again normal distributed O O x

(the Gaussian familv is sel njugate No data points observed
Prior 6-N(0, 1) x O
2 ATX'y, A7)
it X X
f'J‘:JIlVZ' pility
1a iy by | X.0),
conjyi a conjugate prior for tf
rhe
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REVIEW: THE BAYESIAN LINEAR MODEL

MAP after abserving 5 data points

Paosterior of 6
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REVIEW: THE BAYESIAN LINEAR MODEL

MAP after abserving 10 data painis

Posterior of 6
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REVIEW: THE BAYESIAN LINEAR MODEL

MAP after abserving 20 data points

Posterior of 6
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REVIEW: THE BAYESIAN LINEAR MODEL

Based on the posterior distribution O 0O X
MAP after abserving 20 data points
0| X.y~N(o2A Xy, A7) X LO
ra new observation X.. The,
ar model, i.. the distribution X X

—1x" XIA_TXu)

etails:
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REVIEW: THE BAYESIAN LINEAR MODEL

MAP after observing 5 data points

For every test input'x, , we get a distribUtion over the prediction y.. In particular, we get
a posterior mean (orange) and a posterigr variance (grey region equals + / — two times

standard deviation).
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REVIEW: THE BAYESIAN LINEAR MODEL

MAP alter abserving 10 dala points

L)
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For every test input x., we get a distribution-aver the prediction y.. In particular, we get
a posterior mean (orange) and a posterior variance (grey region equals +/— two times

standard deviation).
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REVIEW: THE BAYESIAN LINEAR MODEL

MAP after abserving 20 data points
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For every test input x., we get a distribution over the prediction y.. In particular, we get

a posterior mean (orange) and a posterior variance (grey region equals + / — two times

standard deviation).
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SUMMARY: THE'BAYESIAN LINEAR'MODEL

@ By switchingto a Bayesian perspective, we-donot only have point O O X
estimates for the parameter 6, but whole distributions

@ From the posterior distribution of 8, we can derive a predictive X O
distribution for y, = 6" x..

® We can perform online updates: Whenéver’datapoints are x x

observed, we can update the posterior distribution of 6

Next, we want to develop a theory for general shape functions, and not
only for linear function.
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SUMMARY: THE BAYESIAN LINEAR MODEL

@ By switching to a Bayesian perspective, we do not only have point
estimates for the parameter 6, but whole distributions
@ From the posterior distribution of 8, we can derive a predictive
distribution for y, = 8" x..
@ We can perform online updates: Whenever datapoints are
observed, we can update the posterior distribution of
Next, we want to develop a theory for general shape functions, and not
only for linear function.
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