CALIBRATION
AlY %ﬁjﬁ'éﬂa“ﬁaﬁ'ﬁfﬁ@ V\ﬁ"@g%ﬁc score classifier

f(x) =2 Ljsxze) — 1,
Faiffaue Ry NSRS Eelthirg) ‘C Anseansn
® fiscalbrated iff P(y =1|S = s) = sforalls € [0,1].
@ Different post-processing methods have been proposed for the purpose
of calibration.e., to construct iS‘%’#ﬂ’f’J@"’b function
C: S-adButlnow the three common

such that C(s(x)) is well-calibrated. Here, 5 1§ the possible score set of
the classifier (the image of s).

@ For learning C. a set of calibration datais used:
D = {(s,yM),....(s™M,y™M)} € 8 x {-1,1}

@ This data should be different from the training data used to learn the
scoring classifier. Otherwise, there is arisk of introducing a bias.
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EMPIRICALBINNING AND PLATT SCALING

@ Binning offers a first obvious approachs Partition & inte:bins O O X
(intervals) B, ..., Bu. and defing C(s) = py(s). where J(s)
denotes the lndex of the bln of s (le., S € BJ( s)) and x O

leading to the prediction random variable s(x) be the

re random variable N 1
5 o=t Lstiennyiny X X
® fis calibrated iff P(Pm & S N T. T all <
Z LSKF'FB"-J

] ) rent ¢ essing method:s ’ 1
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@ Another method is Platt scaling, which'essentially applies logistic
regression fo predicted scores s, & J2.J.e.. it fits a calibration .,
function G such that,.

o r learning a e lata i used

S)

1+exp( 4l ) ¢

minRimizing logslossion Beairom the training data used to leam the

ring classifier. Otherwise, there is a risk of introducing a bias

@

. Advanced Machine Leaming ~ 2/8



l ISOTONIC REGRESSIOND PLATT SCALING

o Thesigmoidal transformationit by Platt 'Sealingis appropriate for
somevmiethods (e.d., supportvector machines) butnot forothers.

o Isotonic regression’ combines the nonparametric character of
binning with Platt scaling’s guarantee of monotonicity.

@ Isotonic regression;minimizes

N

is the average propon2o Wnﬂc(sgn))w MW))?

X sl
@ Another method is Plaft scaling, which essentially applies logistic

sulbject 0 the (Gonstraintthat-C is isotonic: () < O{tffor's < t.
o Nbte'tHaf 1§ Bvaiiated only at a finite number of points;

in-between, one may (Ilnearly) interpolate or assume a piecewise
constant function. 0. g

minimizing log-loss o
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PAIR:ADJACENTVIOLATORS ALGORITHM (PAVA)

® Letthe scores ébservédwdrcanbratidn‘b? sdhedt(and‘wnwm’n o O 0X
1 Voarip N S ( ortv 1| ines) but NotIor others
o f‘eg),‘ QUCchat S‘ ;[K 5(2? &nan [(rs; ) tric character o x O
inny \H 's quarantee.o Sty .
i We tf’w?n’se(’akvz‘ﬂlﬂe? : [;gczé X cN ‘which minimize X X
S EZ‘: il y—‘y(n)‘,)‘z %

@ Initialize one block B, for each observation (s, y‘")) the value of
the BiocK is '¢tB5) < P GRd the widh is w(B;) = 1

8 A'terge opératloﬁ‘combiﬂés fiw6 biocks 8" and B it a new
Bk 5l Wt (B = W) W 8 el

- w(B)c(8) + w(B")c(8)
w(B') + w(B") '
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PAIR-ADJACENT VIOLATORS ALGORITHM (PAVA)

® PAVAiterates the followingistepsi{the description isisomewhat O O x
simplified to-avoid notational overload):

j
I (1) Find the first violating pair, namely, adjacent blocks B; and
] Bery suchthats & ¢, 4 if there istho/suich pair)then stop. x x
(2) Merge B; and B, 4 into a new block B.
(3) If e B) < ¢(Bi—1) farthe left neighbor block B;_ 1, merge also
these blocks and continue doing so until no more violations
| are encountered.
I (4): Continuéwith (1)
)
1
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PAIR-ADJACENT VIOLATORS ALGORITHM (PAVA)
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PAIR-ADJACENT VIOLATORS ALGORITHM (PAVA)

@ Note that, in the case of binary classification, the target values y(”)
are allin {0, 14«
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MULTI-CLASS/CALIBRATION ALCORITHM (PAVA)

@ Galibration methods also.exist for.the multisclass case. (i@ e 00X
classification-problems with more than two classes).

i
| @ Then, however, the problem becomes conceptually more difficult X O
(and is still a topic of ongoing research).——
@ While essentially coinciding for binary classification, the following X x
definitions of calibration (leading to increasingly difficult problems)
can be distinguished for more than two classes:
» Calibration of the highest predicted probability (confidence
calibration)

e Calibration of the marginal probabilities (class-wise

calibration) o 3

| e Calibration of the entire vector of predicted probabilities
B (multi-class calibration)
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I MULTI-CLASS CALIBRATION

@ Calibration methods also exist for the multi-class case (i.e.,
classification problems with more than two classes).

@ Then, however, the problem becomes conceptually more difficult
(and is still a topic of ongoing research).

@ While essentially coinciding for binary classification, the following
definitions of calibration (leading to increasingly difficult problems)
can be distinguished for more than two classes:

» Calibration of the highest predicted probability (confidence
calibration)

e Calibration of the marginal probabilities (class-wise
calibration)

e Calibration of the entire vector of predicted probabilities
(multi-class calibration)

N Advanced Machine Leaming -~ 8/8



